
Chapter 8

Declarations

A declaration specifies the interpretation given to a set of identifiers. Declarations have the form:

declaration:

declaration−specifiers init−declarator−listopt; 

The init−declarator−list is a comma−separated sequence of declarators, each of which can have an

initializer. In ANSI C, the init−declarator−list can also contain additional type information:

init−declarator−list:

init−declarator

init−declarator−list , init−declarator

init−declarator:

declarator

declarator = initializer 

The declarators in the init−declarator−list contain the identifiers being declared. The declaration−specifiers

consist of a sequence of specifiers that determine the linkage, storage duration, and part of the type of the

identifiers indicated by the declarator. Declaration−specifiers have the form:

declaration−specifiers:

storage−class−specifier declaration−specifiersopt
type−specifier declaration−specifiersopt
type−qualifier declaration−specifiersopt

If an identifier that is not a tag has no linkage (see "Disambiguating Names"), at most one declaration of

the identifier can appear in the same scope and name space. The type of an object that has no linkage must

be complete by the end of its declarator or initializer. Multiple declarations of tags and ordinary

identifiers with external or internal linkage can appear in the same scope so long as they specify

compatible types.

In traditional C, at most one declaration of an identifier with internal linkage can appear in the same scope

and name space, unless it is a tag.

In ANSI C, a declaration must declare at least one of: 

 • a declarator

 • a tag

 • the members of an enumeration

A declaration may reserve storage for the entities specified in the declarators. Such a declaration is called

a definition. (Function definitions have a different syntax and are discussed in "Function Declarators and

Prototypes" and Chapter 10, "External Definitions.")   

Storage−class Specifiers
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The storage−class−specifier indicates linkage and storage duration. These attributes are discussed in 

"Disambiguating Names". Storage−class specifiers have the form: 

storage−class−specifier:

auto

static

extern

register

typedef

The typedef specifier does not reserve storage and is called a storage class specifier only for syntactic

convenience. See "typedef" for more information.

At most one storage−class specifier can appear in a declaration. If the storage−class−specifier is missing

from a declaration, it is assumed to be extern unless the declaration is of an object and occurs inside a

function, in which case it is assumed to be auto. (See "Changes in Disambiguating Identifiers" for further

details.)   

Identifiers declared within a function with the storage class extern must have an external definition (see 

Chapter 10, "External Definitions") somewhere outside the function in which they are declared. 

Identifiers declared with the storage class static have static storage duration, and either internal linkage (if

declared outside a function) or no linkage (if declared inside a function). If the identifiers are initialized,

the initialization is performed once before the beginning of execution. If no explicit initialization is

performed, static objects are implicitly initialized to zero. 

A register declaration is an auto declaration, with a hint to the compiler that the objects declared will be

heavily used. Whether the object is actually placed in fast storage is implementation−defined. You cannot

take the address of any part of an object declared with the register specifier. 

Type Specifiers

Type specifiers are listed below. The syntax is:

type−specifier:

struct−or−union−specifier

typedef−name

enum−specifier

char

short

int

long

signed

unsigned

float

double

void
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The following list enumerates all valid combinations of type specifiers. These combinations are organized

into a number of sets, each set made up of one line. The arrangement of the type specifiers appearing in

any combination below can be altered without effect. The type specifiers in each set are equivalent in all

implementations. 

 • void

 • char

 • signed char

 • unsigned char

 • short, signed short, short int, or signed short int

 • unsigned short, or unsigned short int

 • int, signed, signed int, or no type specifiers 

 • unsigned, or unsigned int

 • long, signed long, long int, or signed long int

 • unsigned long, or unsigned long int

 • long long, signed long long, long long int, or signed long long int

 • unsigned long long, or unsigned long long int

 • float

 • double

 • long double

In traditional C, the type long float is allowed and equivalent to double; its use is not recommended. It

elicits a warning if you’re not in -cckr mode. Use of the type long double is not recommended in

traditional C.

Note: long long is not a valid ANSI C type, so a warning appears for every occurrence of it in the source

program text in -ansi and -ansiposix modes.

Specifiers for structures, unions, and enumerations are discussed in "Structure and Union Declarations"

and "Enumeration Declarations". Declarations with typedef names are discussed in "typedef". 

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member can have any type. A

union is an object that can, at a given time, contain any one of several members. Structure and union

specifiers have the same form. The syntax is:     

struct−or−union−specifier:

struct−or−union {struct−decl−list}

struct−or−union identifier {struct−decl−list}

struct−or−union identifier
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struct−or−union:

struct

union

The struct−decl−list is a sequence of declarations for the members of the structure or union. The syntax is:

struct−decl−list:

struct−declaration

struct−decl−list struct−declaration 

struct−declaration:

specifier−qualifier−list struct−declarator−list; 

struct−declarator−list:

struct−declarator

struct−declarator−list , struct−declarator 

In the usual case, a struct−declarator is just a declarator for a member of a structure or union. A structure

member can also consist of a specified number of bits. Such a member is also called a bitfield. Its length, a

non−negative constant expression, is separated from the field name by a colon. "Bitfields" are discussed at

the end of this section. 

The syntax for struct−declarator is:

struct−declarator:

declarator

declarator : constant−expression

: constant−expression 

A struct or union cannot contain a member with incomplete or function type, or that is an instance of

itself. It can, however, contain a member that is a pointer to an instance of itself.

Within a structure, the objects declared have addresses that increase as the declarations are read left to

right. Each non−field member of a structure begins on an addressing boundary appropriate to its type;

therefore, there may be unnamed holes in a structure.

A union can be thought of as a structure whose members all begin at offset 0 and whose size is sufficient

to contain any of its members. At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form declares the identifier to be the structure tag (or union

tag) of the structure specified by the list. This type of specifier is one of

struct identifier {struct−decl−list}

union identifier {struct−decl−list} 

A subsequent declaration can use the third form of specifier, one of

struct identifier

union identifier

Structure tags allow definition of self−referential structures. Structure tags also permit the long part of the

declaration to be given once and used several times.
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The third form of a structure or union specifier can be used prior to a declaration that gives the complete

specification of the structure or union in situations in which the size of the structure or union is

unnecessary. The size is unnecessary in two situations: when a pointer to a structure or union is being

declared and when a typedef name is declared to be a synonym for a structure or union. This, for

example, allows the declaration of a pair of structures that contain pointers to each other. 

The names of members of each struct or union have their own name space, and do not conflict with each

other or with ordinary variables. A particular member name cannot be used twice in the same structure,

but it can be used in several different structures in the same scope. Names that are used for tags reside in a

single name space. They do not conflict with other names or with names used for tags in an enclosing

scope. This tag name space, however, consists of tag names used for all struct, union, or enum

declarations. Thus the tag name of an enum may conflict with the tag name of a struct in the same scope.

(See "Disambiguating Names".)

A simple but important example of a structure declaration is the following binary tree structure: 

struct tnode {

char tword[20];

int count;

struct tnode *left;

struct tnode *right; 

}; 

This structure contains an array of 20 characters, an integer, and two pointers to instances of itself. Once

this declaration has been given, the declaration declares s to be a structure of the given sort and sp to be a

pointer to a structure of the given sort. For example:

struct tnode s, *sp; 

With these declarations, the expression sp−>count refers to the count field of the structure to which sp

points. The expression s.left refers to the left subtree pointer of the structure s. The expression 

s.right−>tword[0] refers to the first character of the tword member of the right subtree of s. 

Bitfields

A structure member can consist of a specified number of bits, called a bitfield. Bitfields should be of type 

int, signed int, or unsigned int in strict ANSI C mode. Silicon Graphics allows bitfields of any integral

type, but warn for non−int types in -ansi and -ansiposix modes.

The default type of field members is int, but whether it is signed or unsigned int is defined by the

implementation. It is thus wise to specify the signedness of bitfields when they are declared. In this

implementation, the default type of a bitfield is signed. 

The constant−expression that denotes the width of the bitfield must have a value no greater than the width,

in bits, of the type of the bitfield. An implementation can allocate any addressable storage unit (referred

to in this discussion as simply a "unit") large enough to hold a bitfield. If an adjacent bitfield will not fit in

the remainder of the unit, whether a unit is allocated for it or bitfields are allowed to span units is

implementation−defined. The ordering of the bits within a unit is also implementation−defined.
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A bitfield with no declarator, just a colon and a width, indicates an unnamed field useful for padding. As a

special case, a field with a width of zero, which cannot have a declarator, specifies alignment of the next

field at the next unit boundary.

These implementation−defined characteristics make the use of bitfields inherently nonportable,

particularly if they are used in situations in a union, for example where the underlying object may be

accessed by another data type.

The first bitfield encountered in a struct is not necessarily allocated on a unit boundary and is packed into

the current unit, if possible. A bitfield cannot span a unit boundary. Bits for bitfields are allocated from

left (most significant) to right. 

In the 64−bit implementation, bitfields are packed into as small a unit as possible, where the smallest unit

is 0 bytes in size and the largest unit is 8 bytes in size. The alignment requirements of the struct are

influenced only by the units used to pack bitfields, not by the type of the bitfields. This is quite different

from 32−bit mode, which is described next.

In the 32−bit implementation, the size of a unit for bitfields is equal to the size of the type of the bitfield

that started the unit. A new unit is allocated when the alignment of the type of the next bitfield differs

from the alignment of the current unit, even if the number of bits in the next bitfield would fit into the

current unit. For example, if the current unit has char alignment and the next bitfield has type int, then a

new int−sized unit is allocated.

In this implementation, for example, the following structure is two units in size:

struct {

   char c;

   int k:9,

        :12;

   signed int j:5;

} s;

The first unit consists of the charc in its eight bits. The alignment of an int differs from that of a char;

hence, the next 24 bits are padding, followed by an int unit. The (signed)int bitfield k is in the most

significant 9 bits of the int unit, followed by 12 pad bits and the 5 bits of the signed intj. The size of this

struct is eight bytes.

There are no arrays of bitfields. Since the address−of operator, &, cannot be applied to bitfields, there are

no pointers to bitfields. 

Enumeration Declarations

Enumeration variables and constants have integral type. The syntax is:

enum−specifier:

enum {enum−list}

enum identifier {enum−list}

enum identifier
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enum−list:

enumerator

enum−list , enumerator

enumerator:

identifier

identifier = constant−expression 

The identifiers in an enum−list are declared as int constants and can appear wherever such constants are

allowed. If no enumerators with = appear, then the values of the corresponding constants begin at 0 and

increase by 1 as the declaration is read from left to right. An enumerator with = gives the associated

identifier the value indicated; subsequent identifiers continue the progression from the assigned value.

Note that the use of = may result in multiple enumeration constants having the same integral value, even

though they are declared in the same enumeration declaration.

Enumerators are in the ordinary identifiers name space (see "Name Spaces"). Thus, an identifier used as

an enumerator may conflict with identifiers used for objects, functions, and user−defined types in the same

scope.

The role of the identifier in the enum−specifier is entirely analogous to that of the structure tag in a

struct−specifier; it names a particular enumeration. For example: 

enum color { chartreuse, burgundy, claret=20, winedark }; 

...

enum color *cp, col; 

...

col = claret; 

cp = &col; 

...

if (*cp == burgundy) ...  

This example makes color the enumeration−tag of a type describing various colors, and then declares cp as

a pointer to an object of that type and col as an object of that type. The possible values are drawn from the

set {0,1,20,21}. The tags of enumeration declarations are members of the single tag name space, and thus

must be distinct from tags of struct and union declarations.

Type Qualifiers

Type qualifiers have the syntax shown below:

type−qualifier:

 const

volatile

The same type qualifier cannot appear more than once in the same specifier list either directly or

indirectly (through typedefs). The value of an object declared with the const type qualifier is constant. It

cannot be modified, although it can be initialized following the same rules as the initialization of any

other object. (See the discussion in "Initialization.") Implementations are free to allocate const objects,

which are not also declared volatile, in read−only storage. 
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An object declared with the volatile type qualifier may be accessed in unknown ways or have unknown

side effects. For example, a volatile object may be a special hardware register. Expressions referring to

objects qualified as volatile must be evaluated strictly according to the semantics. When volatile objects

are involved, an implementation is not free to perform optimizations that would otherwise be valid. At

each sequence point, the value of all volatile objects must agree with that specified by the semantics.

If an array is specified with type qualifiers, the qualifiers are applied to the elements of the array. If a 

struct or union is qualified, the qualification applies to each member.

Two qualified types are compatible if they are identically qualified versions of compatible types. The

order of qualifiers in a list has no effect on their semantics.

The syntax of pointers allows the specification of qualifiers that affect either the pointer itself or the

underlying object. Qualified pointers are covered in "Pointer Declarators".

Declarators

Declarators have the syntax shown below: 

declarator:

pointeropt direct−declarator

direct−declarator:

identifier

(declarator)

direct−declarator (parameter−type−listopt)

direct−declarator (identifier−listopt)

direct−declarator [constant−expressionopt] 

Portions of the list above are reproduced in the sections following, along with expansions of their

constituent parts. The grouping is the same as in expressions. 

Meaning of Declarators

Each declarator is an assertion that when a construction of the same form as the declarator appears in an

expression, it designates a function or object with the scope, storage duration, and type indicated by the

declaration.

Each declarator contains exactly one identifier; it is this identifier that is declared. If, in the declaration

T D1 

D1 is simply an identifier, then the type of the identifier is T. If D1 has the form (D) then the underlying

identifier has the type specified by the declaration T D. Thus, a declarator in parentheses is identical to

the unparenthesized declarator. The binding of complex declarators can, however, be altered by

parentheses. 

Pointer Declarators
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Pointer declarators have the form 

pointer:

* type−qualifier−listopt
* type−qualifier−listopt pointer

The following is an example of a declaration: 

T D1 

In this declaration, the identifier has type .. T, where the .. is empty if D1 is just a plain identifier (so

that the type of x in "int x" is just int). Then if D1 has the form * type−qualifier−listoptD, the type of the

contained identifier is .. (possibly−qualified) pointer to T. 

Qualifiers and Pointers

It is important to be aware of the distinction between a qualified pointer to <type> and a pointer to

<qualified type>. In the declarations below, ptr_to_const is a pointer to const long. 

const long *ptr_to_const; 

long * const const_ptr; 

volatile int * const const_ptr_to_volatile; 

Thus, the long pointed to cannot be modified by the pointer. The pointer itself, however, can be altered. 

const_ptr can be used to modify the long that it points to, but the pointer itself cannot be modified. In the

last example, const_ptr_to_volatile is a constant pointer to a volatile int and can be used to modify it. The

pointer itself, however, cannot be modified. 

Array Declarators

If D1 has the form 

D[constant−expressionopt] 

then the contained identifier has type ".. array of T." The expression enclosed in square brackets, if it

exists, must be an integral constant expression whose value is greater than zero. (See "Primary

Expressions".) When several "array of" specifications are adjacent, a multi−dimensional array is created;

the constant expressions that specify the bounds of the arrays can be missing only for the first member of

the sequence.

The absence of the first array dimension is allowed if the array is external and the actual definition (which

allocates storage) is given elsewhere, or if the declarator is followed by initialization. In the latter case, the

size is calculated from the number of elements supplied.

In order for two array types to be compatible, their element types must be compatible. In addition, if both

of their size specifications are present, they must have the same value.

An array can be constructed from one of the basic types, from a pointer, from a structure or union, or from

another array (to generate a multi−dimensional array).

The example below declares an array of float numbers and an array of pointers to float numbers:

float fa[17], *afp[17]; 

 C Language Reference Manual − Chapter 8,  Declarations − 9



Finally, this example declares a static three−dimensional array of integers, with rank 3x5x7. 

static int x3d[3][5][7]; 

In complete detail, x3d is an array of three items; each item is an array of five items; each of the latter

items is an array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j] , x3d[i][j][k ] can

reasonably appear in an expression. The first three have type "array" and the last has type int. 

Function Declarators and Prototypes

The syntax for function declarators is shown below: 

direct−declarator (parameter−type−listopt)

direct−declarator (identifier−listopt)

parameter−type−list:

parameter−list

parameter−list , ... 

parameter−list:

parameter−declaration

parameter−list , parameter−declaration

parameter−declaration:

declaration−specifiers declarator

declaration−specifiers abstract−declaratoropt

identifier−list:

identifier

identifier−list , identifier 

Function declarators cannot specify a function or array type as the return type. In addition, the only

storage−class specifier that can be used in a parameter declaration is register. For example, the declaration

T D1, D1 has the form:

D(parameter−type−listopt) 

Or it has the form:

D(identifier−listopt) 

The contained identifier has the type .. function returning T, and is possibly a prototype, as discussed

below.

A parameter−type−list declares the types of, and can declare identifiers for, the formal parameters of a

function. The absence of a parameter−type−list indicates that no typing information is given for the

function. A parameter−type−list consisting only of the keyword void indicates that the function takes zero

parameters. If the parameter−type−list ends in ellipses (…), the function can have one or more additional

arguments of variable or unknown type. (See <stdarg.h>.) 

The semantics of a function declarator are determined by its form and context. The possible combinations

are: 
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 • The declarator is not part of the function definition. The function is defined elsewhere. In this case,

the declarator cannot have an identifier−list. 

− If the parameter−type−list is absent, the declarator is an old−style function declaration. Only the

return type is significant. 

− If the parameter−type−list is present, the declarator is a function prototype. 

 • The declarator is part of the function definition:

− If the declarator has an identifier−list, the declarator is an old−style function definition. Only the

return type is significant. 

− If the declarator has a parameter−type−list, the definition is in prototype form. If no previous

declaration for this function has been encountered, a function prototype is created for it that has 

file scope. 

If two declarations (one of which can be a definition) of the same function in the same scope are

encountered, they must match, both in type of return value and in parameter−type−list. If one and only one

of the declarations has a parameter−type−list, the behavior varies between ANSI C and Traditional C, as

described below.

In traditional C, most combinations pass without any diagnostic messages. However, an error message is

emitted for cases where an incompatibility is likely to lead to a run−time failure (e.g., a float type in a 

parameter−type−list of a function prototype is totally incompatible with any old−style declaration for the

same function; therefore, Silicon Graphics considers such redeclarations erroneous). 

In ANSI C, if the type of any parameter declared in the parameter−type−list is other than that which would

be derived using the default argument promotions, an error is posted. Otherwise, a warning is posted and

the function prototype remains in scope.

In all cases, the type of the return value of duplicate declarations of the same function must match, as must

the use of ellipses.

When a function is invoked for which a function prototype is in scope, an attempt is made to convert each

actual parameter to the type of the corresponding formal parameter specified in the function prototype,

superseding the default argument promotions. In particular, floats specified in the type list are not

converted to double before the call. If the list terminates with an ellipsis (...), only the parameters

specified in the prototype have their types checked; additional parameters are converted according to the

default argument promotions (discussed in "Type Qualifiers"). Otherwise, the number of parameters

appearing in the parameter list at the point of call must agree in number with those in the function

prototype.

The following are two examples of function prototypes: 

double foo(int *first, float second, ... ); 

int *fip(int a, long l, int (*ff)(float)); 

The first prototype declares a function foo(), returning a double, that has (at least) two parameters: a

pointer to an int and a float. Further parameters can appear in a call of the function and are unspecified.

The default argument promotions are applied to any unspecified arguments. The second prototype
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declares a function fip(), that returns a pointer to an int. The function fip() has three parameters: an int, a 

long, and a pointer to a function returning an int that has a single (float) argument. 

Prototyped Functions Summarized

When a function call occurs, each argument is converted using the default argument promotions unless

that argument has a type specified in a corresponding in−scope prototype for the function being called. It

is easy to envision situations that may prove disastrous if some calls to a function were made with a

prototype in−scope and some were not. Unexpected results can also occur if a function was called with

different prototypes in−scope. Thus, if a function is prototyped, it is extremely important to make sure that

all invocations of the function use the prototype.

In addition to adding a new syntax for external declarations of functions, prototypes have added a new

syntax for external definitions of functions. This syntax is termed function prototype form. It is highly

important to define prototyped functions using a parameter−type−list rather than a simple identifier−list if

the parameters are to be received as intended.

In ANSI C, unless the function definition has a parameter−type−list, it is assumed that arguments have

been promoted according to the default argument promotions. Specifically, an in−scope prototype for the

function at the point of its definition has no effect on the type of the arguments that the function expects. 

In traditional C, if a function definition includes an identifier−list (that is, is not in function−prototype

form) and a prototype for the function is in scope at the point of its definition, then earlier versions of the

compilers merged the two so that the function prototype took precedence. Since this worked only for very

simple cases, Silicon Graphics chose not to do so in this version of the C compiler. Instead, the compilers

issue error diagnostics when argument−type mismatches are likely to result in faulty run−time behavior.

Restrictions on Declarators

Not all the possibilities allowed by the syntax of declarators are actually permitted. The restrictions are as

follows: 

 • functions cannot return arrays or functions although they can return pointers

 • no arrays of functions exist although arrays of pointers to functions can exist

 • a structure or union cannot contain a function, but it can contain a pointer to a function.

As an example, the following declaration declares an integer i, a pointer ip to an integer, a function f

returning an integer, a function fip returning a pointer to an integer, and a pointer pfi to a function, which

returns an integer. 

int i, *ip, f(), *fip(), (*pfi)(); 

It is especially useful to compare the last two. The binding of *fip()  is *(pfi()). The declaration suggests,

and the same construction in an expression requires, the calling of a function fip, and then using

indirection through the (pointer) result to yield an integer. In the declarator (*pfi)(), the extra parentheses

are necessary, as they are also in an expression, to indicate that indirection through a pointer to a function

yields a function, which is then called; it returns an integer.
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Type Names

In several contexts (for example, to specify type conversions explicitly by means of a cast, in a function

prototype, and as an argument of sizeof), it is best to supply the name of a data type. This naming is

accomplished using a "type name," whose syntax is a declaration for an object of that type without the

identifier. The syntax for type names as shown:

type−name:

specifier−qualifier−list abstract−declaratoropt

abstract−declarator:

pointer

pointeropt direct−abstract−declarator

direct−abstract−declarator:

(abstract−declarator)

direct−abstract−declaratoropt [constant−expressionopt]

direct−abstract−declaratoropt (parameter−type−listopt)

The type−name created can be used as a synonym for the type that the omitted identifier would have. The

syntax indicates that a set of empty parentheses in a type name is interpreted as function with no

parameter information rather than as redundant parentheses surrounding the (omitted) identifier.

Examples of type names are shown in Table 8−1.

Table 8−1 Examples of Type Names

Type Description

int integer

int * pointer to integer 

int *[3] array of three pointers to integers 

int (*)[3] pointer to an array of three integers 

int *(void) function with zero arguments returning pointer to integer

int (*)(float, ...) pointer to function returning an integer, that has a  variable number
of arguments the first of which is a float

int (*[3])() array of three pointers to functions returning an integer  for which
no parameter type information is given

Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. The

storage class is supplied by the context in external definitions, and in declarations of formal parameters

and structure members. Missing storage class specifiers appearing in declarations outside of functions are

assumed to be extern (see "External Name Changes" for details). Missing type specifiers in this context

are assumed to be int. In a declaration inside a function, if a type but no storage class is indicated, the

identifier is assumed to be auto. An exception to the latter rule is made for functions because auto

functions do not exist. If the type of an identifier is function returning <type>, it is implicitly declared to

be extern. 
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In an expression, an identifier followed by a left parenthesis (indicating a function call) that is not already

declared, is implicitly declared to be of type function returning int. 

typedef

Declarations with the storage class specifier typedef do not define storage. A typedef has the syntax

shown below:

typedef−name:

identifier 

Rather than becoming an object with the given type, an identifier appearing in a typedef declaration

becomes a synonym for the type. For example:

int intarray[10]; 

If, in the above example, the int type specifier were preceded with typedef, the identifier declared as an

object would instead be declared as a synonym for the array type. This can appear as shown below:

typedef int intarray[10]; 

This example could be used as if it were a basic type. For example: 

intarray ia;

After 

typedef int MILES, *KLICKSP; 

typedef struct { 

double re, im; 

} 

complex; 

the constructions 

MILES distance; 

extern KLICKSP metricp; 

complex z, *zp; 

are all legal declarations. The type of distance is int, that of metricp is pointer to int, and that of z is

the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand−new types, only synonyms for types that could be specified in

another way. Thus, in the example above, distance is considered to have exactly the same type as any

other int object. 

Initialization

A declaration of an object or of an array of unknown size can specify an initial value for the identifier

being declared. The initializer is preceded by =  and consists of an expression or a list of values enclosed

in nested braces.
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initializer:

assignment−expression

{initializer−list}

{initializer−list ,}

initializer−list:

initializer

initializer−list , initializer 

There cannot be more initializers than there are objects to be initialized. All the expressions in an

initializer for an object of static storage duration must be constant expressions (see "Primary Expressions"

.) Objects with automatic storage duration can be initialized by arbitrary expressions involving constants

and previously declared variables and functions, except for aggregate initialization, which can only

include constant expressions.

Identifiers declared with block scope and either external or internal linkage (that is, objects declared in a

function with the storage−class specifier extern) cannot be initialized. 

Variables of static storage duration that are not explicitly initialized are implicitly initialized to zero. The

value of automatic and register variables that are not explicitly initialized is undefined. 

When an initializer applies to a scalar (a pointer or an object of arithmetic type; see "Derived Types"), it

consists of a single expression, perhaps in braces. The initial value of the object is taken from the

expression. With the exception of type qualifiers associated with the scalar, which are ignored during the

initialization, the same conversions as for assignment are performed.

Initialization of Aggregates

In traditional C it is illegal to initialize a union. It is also illegal to initialize a struct of automatic storage

duration. 

In ANSI C, objects that are struct or union types can be initialized, even if they have automatic storage

duration. unions are initialized using the type of the first named element in their declaration. The

initializers used for a struct or union of automatic storage duration must be constant expressions if they

are in an initializer list. If the struct or union is initialized using an <assignment−expression>, the

expression need not be constant.

When the declared variable is a struct or array, the initializer consists of a brace−enclosed,

comma−separated list of initializers for the members of the aggregate written in increasing subscript or

member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the

aggregate. 

If the initializer of a subaggregate or union begins with a left brace, its initializers consist of all the

initializers found between the left brace and the matching right brace. If, however, the initializer does not

begin with a left brace, then only enough elements from the list are taken to account for the members of

the subaggregate; any remaining members are left to initialize the next member of the aggregate of which

the current subaggregate is a part.

Within any brace−enclosed list, there should not be more initializers than members. If fewer initializers
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occur in the list than there are members of the aggregate, then the aggregate is padded with zeros.

Unnamed struct or union members are ignored during initialization.

In ANSI C, if the variable is a union, the initializer consists of a brace−enclosed initializer for the first

member of the union. Initialization of struct or union objects with automatic storage duration can be

abbreviated as a simple assignment of a compatible struct or union object.

A final abbreviation allows a char array to be initialized by a string literal. In this case successive

characters of the string literal initialize the members of the array.

In ANSI C, an array of wide characters (that is, whose element type is compatible with wchar_t) can be

initialized with a wide string literal (see "String Literals"). 

Examples of Initialization

For example, 

int x[] = { 1, 3, 5 }; 

declares and initializes x as a one−dimensional array that has three members, since no size was specified

and there are three initializers. 

float y[4][3] = 

{

 { 1, 3, 5 },

 { 2, 4, 6 },

 { 3, 5, 7 }, 

}; 

is a completely bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0], namely 

y[0][0] , y[0][1 ], and y[0][2] . Likewise, the next two lines initialize y[1] and y[2] . The initializer ends

early, and therefore y[3] is initialized with 0. The next example achieves precisely the same effect.

float y[4][3] = 

{

 1, 3, 5, 2, 4, 6, 3, 5, 7 

}; 

The initializer for y begins with a left brace but that for y[0]  does not; therefore, three elements from the

list are used. Likewise, the next three are taken successively for y[1]  and y[2] . Also, 

float y[4][3] = {

 { 1 }, { 2 }, { 3 }, { 4 } 

}; 

initializes the first column of y (regarded as a two−dimensional array) and leaves the rest 0.

The following example demonstrates the ANSI C rules. A union object 

union dc_u {

 double d;
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 char *cptr; 

}; 

is initialized by using the first element only, as in 

union dc_u dc0 = { 4.0 };

Finally,

char msg[] = "Syntax error on line %s\n"; 

shows a character array whose members are initialized with a string literal. The length of the string (or

size of the array) includes the terminating NULL  character, \0.
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