
Chapter 7

Expressions and Operators

The precedence of expression operators is indicated by their syntax in this chapter; it usually follows the

order of the major subsections, with earlier subsections having higher precedence. For example, since the

multiplication operator * can have a unary−expression (which is a cast−expression) as well as an operand,

the order of evaluation of the expression

~ i * z

gives ~ higher precedence than * and can be written

(~ i) * z

The text indicates this precedence by placing unary−expressions in "Unary Operators", and

multiplicative−expressions in "Multiplicative Operators". This syntax-subsection correlation is violated in

a few cases. For example, cast−expressions can be operands in unary−expressions, in which case the

cast−expression has higher precedence. See "Cast Operators" and "Unary Operators" for more

information.

Within each subsection, the operators have the same precedence. All operators group left to right, unless

otherwise indicated in their discussion. Table 7−1 shows operators and indicates the priority ranking and

grouping of each.

Table 7−1 Operator Precedence and Associativity

Operator (from high to low priority) Grouping

() [] −> . L−R

! ~ ++ −− − (type) * & sizeof (all unary) R−L

* / % L−R

+ − L−R

<< >> L−R

< <= > >= L−R

== != L−R

& L−R

^ L−R

| L−R

&& L−R

|| L−R

? : L−R

= += −= *= /= %= ^= &= |= R−L

, L−R

 The order of evaluation of expressions, as well as the order in which side−effects take place, is

unspecified, except as indicated by the syntax, or specified explicitly in this chapter. The compiler can

arbitrarily rearrange expressions involving a commutative and associative operator (*, +, &, |, ^).

Integer divide−by−zero results in a trap. Other integer exception conditions are ignored. Silicon Graphics

 C Language Reference Manual − Chapter 7, Expressions and Operators − 1

floating point conforms to the IEEE standard. Floating point exceptions are ignored by default, yielding

the default IEEE results of infinity for divide−by−zero and overflow, not−a−number for invalid operations,

and zero for underflow. You can gain control over these exceptions and their results most easily by using

the Silicon Graphics IEEE floating point exception handler package (see handle_sigfpes(3c)). You can

also control these exceptions by implementing your own handler and appropriately initializing the

floating point unit (see fpc(3c)).

Primary Expressions

An identifier is a primary−expression, provided it has been declared as referring to an object, in which

case it is an lvalue; or a function, in which case it is a function designator. Lvalues and function

designators are discussed in "Conversion of lvalues and Function Designators".

primary−expression:

identifier

constant

string literal

(expression)

A constant is a primary−expression. Its type is determined by its form and value, as described in

"Constants".

A string literal is a primary−expression. Its type is array of char, subject to modification, as described in

"Conversions of Characters and Integers".

A parenthesized expression is a primary−expression whose type and value are identical to those of the

unparenthesized expression. The presence of parentheses does not affect whether the expression is an

lvalue, rvalue, or function designator. For information on expressions, see "Constant Expressions".

Postfix Expressions

Postfix expressions involving ., ->, subscripting, and function calls group left to right.

postfix−expression:

primary−expression

postfix−expression [expression]

postfix−expression (argument−expression−list opt)

postfix−expression . identifier

postfix−expression -> identifier

postfix−expression ++

postfix−expression - -

argument−expression−list:

argument−expression

argument−expression−list, argument−expression

Subscripts

A postfix−expression followed by an expression in square brackets is a subscript. Usually, the

 C Language Reference Manual − Chapter 7, Expressions and Operators − 2

A postfix−expression followed by an expression in square brackets is a subscript. Usually, the

postfix−expression has type pointer to <type>, the expression within the square brackets has type int, and

the type of the result is <type>. However, it is equally valid if the types of the postfix−expression and the

expression in brackets are reversed. This is because the expression postfix

E1[E2]

is identical (by definition) to

*((E1)+(E2))

Since + is commutative, E1 and E2 can be interchanged.

You can find further information on this notation in the discussions on identifiers, and in the discussion of

the operators * (in "Unary Operators") and + (in "Additive Operators").

Function Calls

The syntax of postfix−expressions that are function calls is

postfix−expression (argument−expression−list opt)

argument−expression−list:

argument−expression

argument−expression−list, argument−expression

A postfix-expression followed by parentheses containing a possibly empty, comma−separated list of

expressions (which constitute the actual arguments to the function) denotes a function call. The

postfix-expression must be of type function returning <type>, and the result of the function call is of type

<type>, and is not an lvalue. If the postfix-expression denoting the called function consists solely of a

previously unseen identifier foo, the call produces an implicit declaration as if, in the innermost block

containing the call, the declaration had appeared:

extern int foo();

If a corresponding function prototype that specifies a type for the argument being evaluated is in force, an

attempt is made to convert the argument to that type. If the number of arguments does not agree with the

number of parameters specified in the prototype, the behavior is undefined. If the type returned by the

function as specified in the prototype does not agree with the type derived from the postfix−expression

denoting the called function, the behavior is undefined. Such a scenario may occur for an external

function declared with conflicting prototypes in different files. If no corresponding prototype is in scope

or the argument is in the variable argument section of a prototype that ends in ellipses (…), the argument

is converted according to the following default argument promotions:

 • Type float is converted to double.

 • Array and function names are converted to corresponding pointers.

 • When using traditional C:

− types unsigned short and unsigned char are converted to unsigned int.

− types signed short and signed char are converted to signed int.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 3

 • When using ANSI C:

− types short and char, whether signed or unsigned, are converted to int.

In preparing for the call to a function, a copy is made of each actual argument. Thus, all argument passing

in C is strictly by value. A function can change the values of its parameters, but these changes cannot

affect the values of the actual arguments. It is possible to pass a pointer on the understanding that the

function can change the value of the object to which the pointer points. (Arguments that are array names

can be changed as well, since these arguments are converted to pointer expressions.) Since the order of

evaluation of arguments is unspecified, side effects may be delayed until the next sequence point, which

occurs at the point of the actual call after all arguments have been evaluated. (For example, the

incrementation of foo, which is a side−effect of the evaluation of an argument foo++, may be delayed.)

Recursive calls to any function are permitted.

Silicon Graphics recommends consistent use of prototypes for function declarations and definitions, as it

is extremely dangerous to mix prototyped and nonprototyped function declarations/definitions. Never call

functions before you declare them (although the language allows this). It results in an implicit

nonprototyped declaration that may be incompatible with the function definition.

Structure and Union References

A postfix−expression followed by a dot followed by an identifier denotes a structure or union reference.

postfix−expression . identifier

The postfix−expression must be a structure or a union, and the identifier must name a member of the

structure or union. The value is the named member of the structure or union, and it is an lvalue if the first

expression is an lvalue. The result has the type of the indicated member and the qualifiers of the structure

or union.

Indirect Structure and Union References

A postfix−expression followed by an arrow (built from - and >) followed by an identifier is an indirect

structure or union reference.

postfix−expression -> identifier

The postfix−expression must be a pointer to a structure or a union, and the identifier must name a member

of that structure or union. The result is an lvalue referring to the named member of the structure or union

to which the postfix−expression points. The result has the type of the selected member, and the qualifiers

of the structure or union to which the postfix−expression points. Thus the expression

E1->MOS

is the same as

(*E1).MOS

Structures and unions are discussed in "Structure and Union Declarations".

Postfix ++ and - -

 C Language Reference Manual − Chapter 7, Expressions and Operators − 4

The syntax of postfix ++ and postfix −− is:

postfix−expression ++

postfix−expression - -

When postfix ++ is applied to a modifiable lvalue, the result is the value of the object referred to by the

lvalue. After the result is noted, the object is incremented as if the constant 1 (one) were added to it. See

the discussions in "Additive Operators" and "Assignment Operators" for information on conversions. The

type of the result is the same as the type of the lvalue expression. The result is not an lvalue.

When postfix - - is applied to a modifiable lvalue, the result is the value of the object referred to by the

lvalue. After the result is noted, the object is decremented as if the constant 1 (one) were subtracted from

it. See the discussions in "Additive Operators" and "Assignment Operators" for information on

conversions. The type of the result is the same as the type of the lvalue expression. The result is not an

lvalue.

For both postfix ++ and - - operators, updating the stored value of the operand may be delayed until the

next sequence point.

Unary Operators

Expressions with unary operators group from right to left.

 unary−expression:

postfix−expression

++ unary−expression

- - unary−expression

unary−operator cast−expression

sizeof unary−expression

sizeof (type−name)

unary−operator: one of

* & - ! ~ +

Except as noted, the operand of a unary−operator must have arithmetic type.

Address−of and Indirection Operators

The unary * operator means "indirection"; the cast−expression must be a pointer, and the result is either an

lvalue referring to the object to which the expression points, or a function designator. If the type of the

expression is pointer to <type>, the type of the result is <type>.

The operand of the unary & operator can be either a function designator or an lvalue that designates an

object. If it is an lvalue, the object it designates cannot be a bitfield, and it cannot be declared with the

storage−class register. The result of the unary & operator is a pointer to the object or function referred to

by the lvalue or function designator. If the type of the lvalue is <type>, the type of the result is pointer to

<type>.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 5

Unary + and - Operators

The result of the unary - operator is the negative of its operand. The integral promotions are performed on

the operand, and the result has the promoted type and the value of the negative of the operand. Negation

of unsigned quantities is analogous to subtracting the value from 2n, where n is the number of bits in the

promoted type.

The unary + operator exists only in ANSI C. The integral promotions are used to convert the operand. The

result has the promoted type and the value of the operand.

Unary ! and ~ Operators

The result of the logical negation operator ! is 1 if the value of its operand is zero, and 0 if the value of its

operand is nonzero. The type of the result is int. The logical negation operator is applicable to any

arithmetic type and to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic conversions are

performed. The type of the operand must be integral.

Prefix ++ and - - Operators

The prefix operators ++ and - - increment and decrement their operands.

++ unary−expression

- - unary−expression

The object referred to by the modifiable lvalue operand of prefix ++ is incremented. The value is the new

value of the operand but is not an lvalue. The expression ++x is equivalent to x += 1. See the discussions

in "Additive Operators" and "Assignment Operators" for information on conversions.

The prefix - - decrements its lvalue operand in the same manner as prefix ++ increments it.

The sizeof Unary Operator

The sizeof operator yields the size in bytes of its operand. The size of a char is 1 (one). Its major use is in

communication with routines like storage allocators and I/O systems.

sizeof unary−expression

sizeof (type−name)

The operand of sizeof can not have function or incomplete type, or be an lvalue that denotes a bitfield. It

can be an object or a parenthesized type name. In traditional C, the type of the result is unsigned. In

ANSI C, the type of the result is size_t, which is defined in <stddef.h> as unsigned int (in 32−bit mode)

or as unsigned long (in 64−bit mode). The result is a constant and can be used anywhere a constant is

required.

When applied to an array, sizeof returns the total number of bytes in the array. The size is determined

from the declaration of the object in the unary−expression. The sizeof operator can also be applied to a

parenthesized type−name. In that case it yields the size in bytes of an object of the indicated type.

When sizeof is applied to an aggregate, the result includes space used for padding, if any.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 6

Cast Operators

A cast−expression preceded by a parenthesized type−name causes of the value the expression to convert to

the indicated type. This construction is called a cast. Type names are discussed in "Type Names".

cast−expression:

unary−expression

(type−name) cast−expression

The type−name specifies scalar type or void, and the operand has scalar type. Since a cast does not yield an

lvalue, the effect of qualifiers attached to the type name is inconsequential.

When an arithmetic value is cast to a pointer, and vice versa, the appropriate number of bits are simply

copied unchanged from one type of value to the other. Be aware of the possible truncation of pointer

values in 64−bit mode compilation, when a pointer value is converted to an (unsigned) int.

Multiplicative Operators

The multiplicative operators *, /, and % group from left to right. The usual arithmetic conversions are

performed.

multiplicative expression:

cast−expression

multiplicative−expression * cast−expression

multiplicative−expression / cast−expression

multiplicative−expression % cast−expression

Operands of * and / must have arithmetic type. Operands of % must have integral type.

The binary * operator indicates multiplication, and its result is the product of the operands.

The binary / operator indicates division of the first operator (dividend) by the second (divisor). If the

operands are integral and the value of the divisor is 0, SIGTRAP is signalled. Integral division results in

the integer quotient whose magnitude is less than or equal to that of the true quotient, and with the same

sign.

The binary % operator yields the remainder from the division of the first expression (dividend) by the

second (divisor). The operands must be integral. The remainder has the same sign as the dividend, so

that the equality is true when the divisor is nonzero:

(dividend / divisor) * divisor + dividend % divisor == dividend

If the value of the divisor is 0, SIGTRAP is signalled.

Additive Operators

The additive operators + and - group from left to right. The usual arithmetic conversions are performed.

additive−expression:

multiplicative−expression

 C Language Reference Manual − Chapter 7, Expressions and Operators − 7

additive−expression + multiplicative−expression

additive−expression - multiplicative−expression

In addition to arithmetic types, the following type combinations are acceptable for additive−expressions:

 • For addition, one operand is a pointer to an object type and the other operand is an integral type.

 • For subtraction:

− Both operands are pointers to qualified or unqualified versions of compatible object types.

− The left operand is a pointer to an object type, and the right operand has integral type.

The result of the + operator is the sum of the operands. The result of the

- operator is the difference of the operands. When an operand of integral type is added to or subtracted

from a pointer to an object type, the integral operand is first converted to an address offset by multiplying

it by the length of the object to which the pointer points. The result is a pointer of the same type as the

original pointer.

Suppose a has type array of <object>, and p has type pointer to <object> and points to the initial element

of a. Then the result of p n, where n is an integral operand, is the same as &a [\xb1 n].

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length

of the object) to an integral quantity representing the number of objects separating them. Unless the

pointers point to objects in the same array, the result is undefined. The actual type of the result is int in

traditional C, and ptrdiff_t (defined in <stddef.h> as int in 32−bit mode and as long in 64−bit mode) in

ANSI C.

Shift Operators

The shift operators << and >> group from left to right. Each operand must be of an integral type. The

integral promotions are performed on each operand. The type of the result is that of the promoted left

operand. The result is undefined if the right operand is negative or greater than or equal to the length in

bits of the promoted left operand.

shift−expression:

additive−expression

shift−expression << additive−expression

shift−expression >> additive−expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left−shifted E2 bits. Vacated bits are filled with

zeros.

The value of E1>>E2 is E1 right−shifted E2 bit positions. Vacated bits are filled with zeros if E1 is

unsigned, or if it’s signed and its value is nonnegative. If E1 is signed and its value is negative, vacated

bits are filled with ones.

Relational Operators

The relational operators group from left to right.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 8

relational−expression:

shift−expression

relational−expression < shift−expression

relational−expression > shift−expression

relational−expression <= shift−expression

relational−expression >= shift−expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all

yield a result of type int with the value 0 if the specified relation is false and 1 if it is true.

The operands must be one of the following:

 • both arithmetic, in which case the usual arithmetic conversions are performed on them

 • both pointers to qualified or unqualified versions of compatible object types

 • both pointers to qualified or unqualified versions of compatible incomplete types

When two pointers are compared, the result depends on the relative locations in the address space of the

pointed−to objects. Pointer comparison is portable only when the pointers point to objects in the same

aggregate. In particular, no correlation is guaranteed between the order in which objects are declared and

their resulting addresses.

Equality Operators

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational operators

except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the same truth

value.)

equality−expression:

relational−expression

equality−expression == relational−expression

equality−expression != relational−expression

The operands must be one of the following:

 • both arithmetic, in which case the usual arithmetic conversions are performed on them

 • both pointers to qualified or unqualified versions of compatible types

 • a pointer to an object or incomplete type, and a pointer to qualified or unqualified void type

 • a pointer and a null pointer constant

The semantics detailed in "Relational Operators" apply if the operands have types suitable for those

operators. Combinations of other operands have the behavior detailed below:

 • Two null pointers to object or incomplete types are equal. If two pointers to such types are equal,

they either are null, point to the same object, or point to one object beyond the end of an array of such

objects.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 9

 • Two pointers to the same function are equal, as are two null function pointers. Two function pointers

that are equal are either both null or both point to the same function.

Bitwise AND Operator

Each operand must have integral type. The usual arithmetic conversions are performed. The result is the

bitwise AND function of the operands, that is, each bit in the result is 0 unless the corresponding bit in

each of the two operands is 1.

AND−expression:

equality−expression

AND−expression & equality−expression

Bitwise Exclusive OR Operator

Each operand must have integral type. The usual arithmetic conversions are performed. The result has

type int, long, or long long, and the value is the bitwise exclusive OR function of the operands. That is,

each bit in the result is 0 unless the corresponding bit in one of the operands is 1, and the corresponding

bit in the other operand is 0.

exclusive−OR−expression:

AND−expression

exclusive−OR−expression ^ AND−expression

Bitwise Inclusive OR Operator

Each operand must have integral type. The usual arithmetic conversions are performed.

inclusive−OR−expression:

exclusive−OR−expression

inclusive−OR−expression | exclusive−OR−expression

The result has type int, long, or long long, and the value is the bitwise inclusive OR function of the

operands. That is, each bit in the result is 0 unless the corresponding bit in at least one of the operands is

1.

Logical AND Operator

The && operator groups left to right.

logical−AND−expression:

inclusive−OR−expression

logical−AND−expression && inclusive−OR−expression

Each of the operands must have scalar type. The result has type int and value 1 if neither of its operands

evaluates to 0. Otherwise it has value 0.

Unlike &, && guarantees left to right evaluation; moreover, the second operand is not evaluated if the

 C Language Reference Manual − Chapter 7, Expressions and Operators − 10

first operand evaluates to zero. There is a sequence point after the evaluation of the first operand.

Logical OR Operator

The || operator groups left to right.

logical−OR−expression:

logical−AND−expression

logical−OR−expression || logical−AND−expression

Each of the operands must have scalar type. The result has type int and value 1 if either of its operands

evaluates to one. Otherwise it has value 0.

Unlike |, || guarantees left to right evaluation; moreover, the second operand is not evaluated unless the

first operand evaluates to zero. A sequence point occurs after the evaluation of the first operand.

Conditional Operator

Conditional expressions group from right to left.

conditional−expression:

logical−OR−expression

logical−OR−expression ? expression : conditional−expression

The type of the first operand must be scalar. Only certain combinations of types are allowed for the

second and third operands. These combinations are listed below, along with the type of result the

combination yields.

 • Both can be arithmetic types. In this case, the usual arithmetic conversions are performed on them to

derive a common type, which is the type of the result.

 • Both are compatible structure or union objects. The result has that type.

 • Both are void. The type of the result is void.

 • One is a pointer, and the other a null pointer constant. The type of the result is the type of the

nonconstant pointer.

 • One is a pointer to void, and the other is a pointer to an object or incomplete type. The second

operand is converted to a pointer to void, and this is the type of the result.

 • Both are pointers to qualified or unqualified versions of compatible types. The result has a type

compatible with each, qualified with all the qualifiers of the types pointed to by both operands.

Evaluation of the conditional operator proceeds as follows. The first expression is evaluated, after which a

sequence point occurs. If the value of the first expression is nonzero, the result is the value of the second

operand; otherwise it is that of the third operand. Only one of the second and third operands is evaluated.

Assignment Operators

All assignment operators group from right to left.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 11

assignment−expression:

conditional−expression

unary−expression assignment−operator assignment−expression

assignment operator: one of

= *= /= %= += −= <<= >>= &= ^= |=

Assignment operators require a modifiable lvalue as their left operand. The type of an assignment

expression is that of its unqualified left operand. The result is not an lvalue. Its value is the value stored in

the left operand after the assignment, but the actual update of the stored value may be delayed until the

next sequence point.

The order of evaluation of the operands is unspecified.

Assignment Using = (Simple Assignment)

The operands permissible in simple assignment must obey one of the following:

 • Both have arithmetic type or are compatible structure or union types.

 • Both are pointers, and the type pointed to by the left has all of the qualifiers of the type pointed to by

the right.

 • One is a pointer to an object or incomplete type, and the other is a pointer to void. The type pointed

to by the left must have all of the qualifiers of the type pointed to by the right.

 • The left operand is a pointer, and the right is a null pointer constant.

In simple assignment, the value of the right operand is converted to the type of the assignment expression

and replaces the value of the object referred to by the left operand. If the value being stored is accessed by

another object that overlaps it, the behavior is undefined unless the overlap is exact and the types of the

two objects are compatible.

Compound Assignment

For the operators += and −=, either both have arithmetic types, or the left operand is a pointer and the right

is an operand integral. In the latter case, the right operand is converted as explained in "Additive

Operators". For all other operators, each operand must have arithmetic type consistent with those allowed

for the corresponding binary operator.

The expression E1 op = E2 is equivalent to the expression E1 = E1 op E2, except that in the former, E1 is

evaluated only once.

Comma Operator

A pair of expressions separated by a comma is evaluated left to right, and the value of the left expression

is discarded.

expression:

assignment−expression

 C Language Reference Manual − Chapter 7, Expressions and Operators − 12

expression, assignment−expression

The type and value of the result are the type and value of the right operand. This operator groups left to

right. In contexts where comma is given a special meaning, the comma operator as described in this

section can appear only in parentheses. Two such contexts are lists of actual arguments to functions

(described in "Primary Expressions") and lists of initializers (see "Initialization"). For example, the

following code has three arguments, the second of which has the value 5.

f(a, (t=3, t+2), c)

Constant Expressions

A constant expression can be used any place a constant can be used.

constant−expression:

conditional−expression

It cannot contain assignment, increment, decrement, function−call, or comma operators. It must evaluate to

a constant that is in the range of representable values for its type. Otherwise, the semantic rules for the

evaluation of nonconstant expressions apply.

Constant expressions are separated into three classes:

 • An integral constant expression has integral type and is restricted to operands that are integral

constants, sizeof expressions, and floating constants that are the immediate operands of integral casts.

 • An arithmetic constant expression has arithmetic type and is restricted to operands that are arithmetic

constants, and sizeof expressions. Cast expressions in arithmetic constant expressions can convert

only between arithmetic types.

 • An address constant is a pointer to an lvalue designating an object of static storage duration, or a

pointer to a function designator. It can be created explicitly or implicitly, as long as no attempt is

made to access an object value.

Either address or arithmetic constant expressions can be used in initializers. In addition, initializers can

contain null pointer constants and address constants (for object types), and plus or minus integral constant

expressions.

 C Language Reference Manual − Chapter 7, Expressions and Operators − 13

