
Chapter 6

Operator Conversions

A number of operators can, depending on the types of their operands, cause an implicit conversion of

some operands from one type to another. The following discussion explains the results you can expect

from these conversions. The conversions demanded by most operators are summarized in "Arithmetic

Conversions". As necessary, a discussion of the individual operators supplements the summary.

Conversions of Characters and Integers

You can use a character or a short integer wherever you can use an integer. Characters are unsigned by

default. In all cases, the value is converted to an integer. Conversion of a shorter integer to a longer

integer preserves the sign. Traditional C uses "unsigned preserving integer promotion" (unsigned short to

unsigned int), while ANSI C uses "value preserving integer promotion" (unsigned short to int).

A longer integer is truncated on the left when converted to a shorter integer or to a char. Excess bits are

simply discarded.

Conversions of Float and Double

Historically in C, expressions containing floating point operands (either float or double) were calculated

using double precision. This is also true of calculations in traditional C, unless you’ve specified the

compiler option -float. With the -float option, calculations involving floating point operands and no

double or long double operands take place in single precision. The -float option has no effect on

argument promotion rules at function calls or on function prototypes.

ANSI C performs calculations involving floating point in the same precision as if -float had been

specified in traditional C, except when floating point constants are involved.

In traditional C, specifying the -float option coerces floating point constants into type float if all the other

subexpressions are of type float. This is not the case in ANSI C. ANSI C considers all floating point

constants to be implicitly double precision, and arithmetics involving such constants therefore take place

in double precision. To force single precision arithmetic in ANSI C, use the f or F suffix on floating point

constants. To force long double precision on constants, use the l or L suffix. For example, 3.14l is long

double precision, 3.14 is double precision, and 3.14f is single precision in ANSI C.

For a complete discussion with examples, see "Type Promotion and Floating−Point Constants".

Conversion of Floating and Integral Types

Conversions between floating and integral values are machine dependent. Silicon Graphics uses IEEE

floating point, in which the default rounding mode is to nearest, or in case of a tie, to even. Floating point

rounding modes can be controlled using the facilities of fpc(3c). Floating point exception conditions are

discussed in the introductory paragraph of Chapter 7, "Expressions and Operators."

When a floating value is converted to an integral value, the rounded value is preserved as long as it does

not overflow. When an integral value is converted to a floating value, the value is preserved unless a

 C Language Reference Manual − Chapter 6, Operator Conversions − 1

value of more than six significant digits is being converted to single precision, or fifteen significant digits

is being converted to double precision.

Conversion of Pointers and Integers

An expression of integral type can be added to or subtracted from an object pointer. In such a case, the

integer expression is converted as specified in the discussion of the addition operator in "Additive

Operators". Two pointers to objects of the same type can be subtracted. In this case, the result is converted

to an integer as specified in the discussion of the subtraction operator, in "Additive Operators".

Conversion of Unsigned Integers

When an unsigned integer is converted to a longer unsigned or signed integer, the value of the result is

preserved. Thus, the conversion amounts to padding with zeros on the left.

When an unsigned integer is converted to a shorter signed or unsigned integer, the value is truncated on

the left. This truncation may produce a negative value, if the result is signed.

Arithmetic Conversions

Many types of operations in C require two operands to be converted to a common type. Two sets of

conversion rules are applied to accomplish this conversion. The first, referred to as the integral

promotions, defines how integral types are promoted to one of several integral types that are at least as

large as int. The second, called the usual arithmetic conversions, derives a common type in which the

operation is performed.

ANSI C and traditional C follow different sets of these rules.

Integral Promotions

The difference between the ANSI C and traditional versions of the conversion rules is that the traditional

C rules emphasize preservation of the (un)signedness of a quantity, while ANSI C rules emphasize

preservation of its value.

In traditional C, operands of types char, unsigned char, and unsigned short are converted to unsigned

int. Operands of types signed char and short are converted to int.

ANSI C converts all char and short operands, whether signed or unsigned, to int. Only operands of type

unsigned int, unsigned long, and unsigned long long may remain unsigned.

Usual Arithmetic Conversions

Besides differing in emphasis on signedness and value preservation, the usual arithmetic conversion rules

of ANSI C and traditional C also differ in the precision of the chosen floating point type.

Below are two sets of conversion rules, one for traditional C, and the other for ANSI C. Each set is

ordered in decreasing precedence. In any particular case, the rule that applies is the first whose conditions

are met.

 C Language Reference Manual − Chapter 6, Operator Conversions − 2

Each rule specifies a type, referred to as the result type. Once a rule has been chosen, each operand is

converted to the result type, the operation is performed in that type, and the result is of that type.

Traditional C Conversion Rules

The traditional C conversion rules are:

 • If any operand is of type double, the result type is double.

 • If an operand is of type float, the result type is float if you have specified the -float switch.

Otherwise, the result type is double.

 • The integral promotions are performed on each operand:

− If one of the operands is of type unsigned long long, the result is of type unsigned long long

− If one of the operands is of type long long, the result is of type long long

− If one of the operands is of type unsigned long, the result is of type unsigned long

− If one of the operands is of type long, the result is of type long

− If one of the operands is of type unsigned int, the result type is unsigned int

− Otherwise, the result is of type int

ANSI C Conversion Rules

The ANSI C rules are as follows:

 • If any operand is of type long double, the result type is long double.

 • If any operand is of type double, the result type is double.

 • If an operand is of type float, the result type is float.

 • The integral promotions are performed on each operand:

− If one of the operands is of type unsigned long long, the result is of type unsigned long long

− If one of the operands is of type long long, the result is of type long long

− If one of the operands is of type unsigned long, the result is of type unsigned long

− If one of the operands is of type long, the result is of type long

− If one of the operands is of type unsigned int, the result type is unsigned int

− Otherwise the result is of type int

Conversion of Other Operands

The following three sections discuss conversion of lvalues, function designators, void objects, and

pointers.

Conversion of lvalues and Function Designators

 C Language Reference Manual − Chapter 6, Operator Conversions − 3

Except as noted, if an lvalue that has type array of <type> appears as an operand, it is converted to an

expression of the type pointer to <type>. The resultant pointer points to the initial element of the array. In

this case, the resultant pointer ceases to be an lvalue. (For a discussion of lvalues, see "Objects and

lvalues".)

A function designator is an expression that has function type. Except as noted, a function designator

appearing as an operand is converted to an expression of type pointer to function.

Conversion of Void Objects

The (nonexistent) value of a void object cannot be used in any way, and neither explicit nor implicit

conversion can be applied. Because a void expression denotes a nonexistent value, such an expression

can be used only as an expression statement (see "Expression Statement"), or as the left operand of a

comma expression (see "Comma Operator").

An expression can be converted to type void by use of a cast. For example, this makes explicit the

discarding of the value of a function call used as an expression statement.

Conversion of Pointers

A pointer to void can be converted to a pointer to any object type and back without change in the

underlying value.

The NULL pointer constant can be specified either as the integral value zero, or the value zero cast to a

pointer to void. If a NULL pointer constant is assigned or compared to a pointer to any type, it is

appropriately converted.

 C Language Reference Manual − Chapter 6, Operator Conversions − 4

