
Chapter 3

C Language Changes

This chapter describes changes to the C language including:

 • "Preprocessor Changes" discusses two changes in the way the preprocessor handles string literals and

tokens.

 • "Changes in Disambiguating Identifiers" covers the four characteristics ANSI C uses to distinguish

identifiers.

 • "Types and Type Compatibility" describes ANSI C changes to type promotions and type

compatibility.

 • "Function Prototypes" explains how ANSI C handles function prototyping.

 • "External Name Changes" discusses the changes in function, linker−defined, and data area names.

 • "Standard Headers" lists standard header files.

Preprocessor Changes

When compiling in an ANSI C mode (which is the default unless you specify

-cckr), ANSI−standard C preprocessing is used. The preprocessor is built into the C front end and is

functionally unchanged from the version appearing on IRIX Release 3.10.

The 3.10 version of the compiler had no built−in preprocessor and used two standalone preprocessors for

-cckr (cpp(1)) and ANSI C (acpp(5)) preprocessing respectively. If you compile using the -32 option, you

can activate acpp or cpp instead of the built−in preprocessor by using the -oldcpp option, and acpp in

-cckr mode by using the -acpp option. Silicon Graphics recommends that you always use the built−in

preprocessor, rather than cpp or acpp, since these standalone preprocessors may not be supported in future

releases of the compilers.

acpp is a public domain preprocessor and its source is included in /usr/src/gnu/acpp.

Traditionally, the C preprocessor performed two functions that are now illegal under ANSI C. These

functions are the substitution of macro arguments within string literals and the concatenation of tokens

after removing a null comment sequence.

Replacement of Macro Arguments in Strings

Suppose you define two macros IN and PLANT as shown in this example:

#define IN(x) ‘x’

#define PLANT(y) "placing y in a string"

Later, you invoke them as follows:

IN(hi)

PLANT(foo)

 C Language Reference Manual − Chapter 3, C Language Changes − 1

Compiling with -cckr makes these substitutions:

‘hi’

"placing foo in a string"

However, since ANSI C considers a string literal to be an atomic unit, the expected substitution doesn’t

occur. So, ANSI C adopted an explicit preprocessor sequence to accomplish the substitution.

In ANSI C, adjacent string literals are concatenated. Thus

"abc" "def"

becomes

"abcdef"

A mechanism for quoting a macro argument was adopted that relies on this. When a macro definition

contains one of its formal arguments preceded by a single #, the substituted argument value is quoted in

the output.

The simplest example of this is as follows:

#define STRING_LITERAL(a) # a

For example, the above code is invoked as:

STRING_LITERAL(foo)

This code yields:

"foo"

In conjunction with the rule of concatenation of adjacent string literals, the following macros can be

defined:

#define ARE(a,c) # a " are " # c

Then

ARE(trucks,big)

yields

"trucks" " are " "big"

or

"trucks are big"

when concatenated. Blanks prepended and appended to the argument value are removed. If the value has

more than one word, each pair of words in the result is separated by a single blank. Thus, the macro ARE

above could be invoked as the following:

ARE(fat cows,big)

ARE(fat cows, big)

Each of the above yields (after concatenation):

 C Language Reference Manual − Chapter 3, C Language Changes − 2

"fat cows are big"

Be sure to avoid enclosing your macro arguments in quotes, since these quotes are placed in the output

string. For example,

ARE ("fat cows", "big")

This code becomes:

"\"fat cows\" are \"big\""

No obvious facility exists to enclose macro arguments with single quotes.

Token Concatenation

When compiling -cckr, the value of macro arguments can be concatenated by entering

#define glue(a,b) a/**/b

glue(FOO,BAR)

The result yields FOOBAR.

This concatenation does not occur under ANSI C, since null comments are replaced by a blank. However,

similar behavior can be obtained by using the ## operator in -ansi and -xansi mode. ## instructs the

precompiler to concatenate the value of a macro argument with the adjacent token. Thus

#define glue_left(a) GLUED ## a

#define glue_right(a) a ## GLUED

#define glue(a,b) a ## b

glue_left(LEFT)

glue_right(RIGHT)

glue(LEFT,RIGHT)

yields

GLUEDLEFT

RIGHTGLUED

LEFTRIGHT

Furthermore, the resulting token is a candidate for further replacement. Note what happens in this

example:

#define HELLO "hello"

#define glue(a,b) a ## b

glue(HEL,LO)

The above example yields the following:

"hello"

Changes in Disambiguating Identifiers

Under ANSI C, an identifier has four disambiguating characteristics: its scope, linkage, namespace, and

 C Language Reference Manual − Chapter 3, C Language Changes − 3

storageduration. Each of these characteristics was used in traditional C, either implicitly or explicitly.

Except in the case of storage duration, which is either static or automatic, the definitions of these

characteristics chosen by the standard differ in certain ways from those you may be accustomed to, as

detailed below. For a discussion of the same material with a different focus, see "Disambiguating Names"

.

Scoping Differences

ANSI C recognizes four scopes of identifiers: the familiar file and block scopes and the new function and

function prototype scopes.

 • Function scope includes only labels. As in traditional C, labels are valid until the end of the current

function.

 • Block scope rules differ from traditional C in one significant instance: the outermost block of a

function and the block that contains the function arguments are the same under ANSI C. For

example:

int f(x)

int x;

{

 int x;

 x = 1;

}

ANSI C complains of a redeclaration of x, whereas traditional C quietly hides the argument x with the

local variable x, as they were in distinct scopes.

 • Function prototype scope is a new scope in ANSI C. If an identifier appears within the list of

parameter declarations in a function prototype that is not part of a function definition, it has function

prototype scope, which terminates at the end of the prototype. This allows any dummy parameter

names appearing in a function prototype to disappear at the end of the prototype.

Consider the following example:

char * getenv (const char * name);

int name;

The int variable name does not conflict with the parameter name since the parameter went out of

scope at the end of the prototype. However, the prototype is still in scope.

 • Identifiers appearing outside of any block, function, or function prototype have file scope.

One last discrepancy in scoping rules between ANSI and traditional C concerns the scope of the function

foo() in the example below:

float f;

func0() {

 extern float foo() ;

 f = foo() ;

 C Language Reference Manual − Chapter 3, C Language Changes − 4

}

func1() {

 f = foo() ;

}

In traditional C, the function foo() would be of type float when it is invoked in the function func1(), since

the declaration for foo() had file scope, even though it occurred within a function. ANSI C dictates that the

declaration for foo() has block scope. Thus, there is no declaration for foo() in scope in func1(), and it is

implicitly typed int. This difference in typing between the explicitly and implicitly declared versions of

foo() results in a redeclaration error at compile time, since they both are linked to the same external

definition for foo() and the difference in typing could otherwise produce unexpected behavior.

Name Space Changes

ANSI C recognizes four distinct name spaces: one for tags, one for labels, one for members of a particular

struct or union, and one for everything else. This division creates two discrepancies with traditional C:

 • In ANSI C, each struct or union has its own name space for its members. This is a pointed departure

from traditional C, in which these members were nothing more than offsets, allowing you to use a

member with a structure to which it does not belong. This usage is illegal in ANSI C.

 • Enumeration constants were special identifiers in versions of Silicon Graphics C prior to IRIX

Release 3.3. In ANSI C, these constants are simply integer constants that can be used anywhere they

are appropriate. Similarly, in ANSI C, other integer variables can be assigned to a variable of an

enumeration type with no error.

Changes in the Linkage of Identifiers

An identifier’s linkage determines which of the references to that identifier refer to the same object. This

terminology formalizes the familiar concept of variables declared extern and variables declared static and

is a necessary augmentation to the concept of scope.

extern int mytime;

static int yourtime;

In the example above, both mytime and yourtime have file scope. However, mytime has external linkage,

while yourtime has internal linkage. An object can also have no linkage, as is the case of automatic

variables.

The above example illustrates another implicit difference between the declarations of mytime and

yourtime. The declaration of yourtime allocates storage for the object, whereas the declaration of mytime

merely references it. If mytime is initialized as follows:

int mytime=0;

This also allocates storage. In ANSI C terminology, a declaration that allocates storage is referred to as a

definition. Herein lies the change.

In traditional C, neither of the declarations below was a definition.

 C Language Reference Manual − Chapter 3, C Language Changes − 5

extern int bert;

int bert;

In effect, the second declaration included an implicit extern specification. This is not true in ANSI C.

Note: Objects with external linkage that are not specified as extern at the end of the compilation unit are

considered definitions, and, in effect, initialized to zero. (If multiple declarations of the object are in the

compilation unit, only one needs the extern specification.)

The effect of this change is to produce "multiple definition" messages from the linker when two modules

contain definitions of the same identifier, even though neither is explicitly initialized. This is often

referred to as the strict ref/def model. A more relaxed model can be achieved by using the compiler flag

-common.

The ANSI C linker issues a warning when it finds redundant definitions, indicating the modules that

produced the conflict. However, the linker cannot determine whether the definition of the object is

explicit. The result may be incorrectly initialized objects, if a definition was given with an explicit

initialization, and this definition is not the linker’s random choice.

Thus, consider the following example:

module1.c:

 int ernie;

module2.c:

 int ernie=5;

ANSI C implicitly initializes ernie in module1.c to zero. To the linker, ernie is initialized in two different

modules. The linker warns you of this situation, and chooses the first such module it encounters as the

true definition of ernie. This module may or may not contain the explicitly initialized copy.

Types and Type Compatibility

Historically, C has allowed free mixing of arithmetic types in expressions and as arguments to functions.

(Arithmetic types include integral and floating point types. Pointer types are not included.) C’s type

promotion rules reduced the number of actual types used in arithmetic expressions and as arguments to

three: int, unsigned, and double. This scheme allowed free mixing of types, but in some cases forced

unnecessary conversions and complexity in the generated code.

One ubiquitous example of unnecessary conversions is when float variables were used as arguments to a

function. C’s type promotion rules often caused two unwanted expensive conversions across a function

boundary.

ANSI C has altered these rules somewhat to avoid the unnecessary overhead in many C implementations.

This alteration, however, may produce differences in arithmetic and pointer expressions and in argument

passing. For a complete discussion of operator conversions and type promotions, see Chapter 6,

"Operator Conversions."

Type Promotion in Arithmetic Expressions

 C Language Reference Manual − Chapter 3, C Language Changes − 6

Two differences are noteworthy between ANSI and traditional C. First, ANSI C relaxes the restriction

that all floating point calculations must be performed in double precision. In the example below,

pre−ANSI C compilers are required to convert each operand to double, perform the operation in double

precision, and truncate the result to float.

extern float f,f0,f1;

addf() {

 f = f0 + f1;

}

These steps are not required in ANSI C. In ANSI C, the operation can be done entirely in

single−precision. (In traditional C, these operations were performed in single−precision if the -float

compiler option was selected.)

The second difference in arithmetic expression evaluation involves integral promotions. ANSI C dictates

that any integral promotions be value−preserving. Traditional C used unsignedness−preserving

promotions. Consider the example below:

unsigned short us=1,them=2;

int i;

test() {

 i = us − them;

}

ANSI C’s value−preserving rules cause each of us and them to be promoted to int, which is the expression

type. The unsignedness−preserving rules, in traditional C, cause each of us and them to be promoted to

unsigned, which is the expression type. The latter case yields a large unsigned number, whereas ANSI C

yields −1. The discrepancy in this case is inconsequential, as the same bit pattern is stored in the integer i

in both cases, and it is later interpreted as −1.

However, if the case is altered slightly as in the following example:

unsigned short us=1,them=2;

float f;

test() {

 f = us − them;

}

The result assigned to f is quite different under the two schemes. If you use the -wlint option, you’ll be

warned about the implicit conversions from int or unsigned to float.

For more information on arithmetic conversions, see "Arithmetic Conversions".

Type Promotion and Floating−Point Constants

The differences in behavior of ANSI C floating−point constants and traditional C floating point constants

can cause numerical and performance differences in code ported from the traditional C to the ANSI C

compiler.

For example, consider the result type of the computation below:

 C Language Reference Manual − Chapter 3, C Language Changes − 7

#define PI 3.1415926

float a,b;

b = a * PI;

The result type of b depends on which compilation options you use. Table 3−1 lists the effects of various

options.

Table 3−1 The Effect of Compilation Options on Floating−Point Conversions

Compilation Option PI Constant Type Promotion Behavior

-cckr double (float)((double)a *

PI)

-cckr -float float a * PI

-xansi double (float)((double)a *

PI)

-ansi double (float)((double)a *

PI)

Each conversion incurs computational overhead.

The -float flag has no effect if you also specify -ansi or -xansi. To prevent the promotion of floating

constants to double and thus promoting the computation to double precision multiplies you must

specify the constant as a single precision floating point constant. To continue the example, use:

#define PI 3.1415926f /* single precision float */

Traditional C (compiled with the -cckr option) doesn’t recognize the f float qualifier, however. You may

want to write the constant definition like this:

#ifdef __STDC__

#define PI 3.1415926f

#else

#define PI 3.1415926

#endif

If you compile with the -ansi or -xansi options, __STDC__ is automatically defined as though

-D__STDC__ = 1 were used on your compilation line.

If you compile with the -ansi, -ansiposix or -xansi options, __STDC__ is automatically defined, as

though you used -D__STDC__=1 on your compilation line. Thus, with the last form of constant

definition noted above, the calculation in the example is promoted as described in Table 3−2

Table 3−2 Using __STDC__ to Affect Floating Point Conversions

Compilation Option PI Constant Type Promotion Behavior

-cckr double (float)((double)a *

PI)

-cckr -float float a * PI

-xansi float a * PI

-ansi float a * PI

 C Language Reference Manual − Chapter 3, C Language Changes − 8

Compatible Types

To determine whether or not an implicit conversion is permissible, ANSI C introduced the concept of

compatible types. After promotion, using the appropriate set of promotion rules, two non−pointer types are

compatible if they have the same size, signedness, integer/float characteristic, or, in the case of aggregates,

are of the same structure or union type. Except as discussed in the previous section, no surprises should

result from these changes. You should not encounter unexpected problems unless you are using pointers.

Pointers are compatible if they point to compatible types. No default promotion rules apply to pointers.

Under traditional C, the following code fragment compiled silently:

int *iptr;

unsigned int *uiptr;

foo() {

 iptr = uiptr;

}

Under ANSI C, the pointers iptr and uiptr do not point to compatible types (as they differ in

unsignedness), which means that the assignment is illegal. Insert the appropriate cast to alleviate the

problem. When the underlying pointer type is irrelevant or variable, use the wildcard type void *.

Argument Type Promotions

ANSI C rules for the promotion of arithmetic types when passing arguments to a function depend on

whether or not a prototype is in scope for the function at the point of the call. If a prototype is not in

scope, the arguments are converted using the default argument promotion rules: short and char types

(whether signed or unsigned) are passed as ints, other integral quantities are not changed, and floating

point quantities are passed as doubles. These rules are also used for arguments in the variable−argument

portion of a function whose prototype ends in ellipses (…).

If a prototype is in scope, an attempt is made to convert each argument to the type indicated in the

prototype prior to the call. The types of conversions that succeed are similar to those that succeed in

expressions. Thus, an int is promoted to a float if the prototype so indicates, but a pointer to unsigned is

not converted to a pointer to int . ANSI C also allows the implementation greater freedom when passing

integral arguments if a prototype is in scope. If it makes sense for an implementation to pass short

arguments as 16−bit quantities, it can do so.

Use of prototypes when calling functions allows greater ease in coding. However, due to the differences

in argument promotion rules, serious discrepancies can occur if a function is called both with and without

a prototype in scope. Make sure that you use prototypes consistently and that any prototype is declared to

be in scope for all uses of the function identifier.

Mixed Use of Functions

To reduce the chances of problems occurring when calling a function with and without a prototype in

scope, limit the types of arithmetic arguments in function declarations. In particular, avoid using short or

char types for arguments; their use rarely improves performance and may raise portability issues if you

 C Language Reference Manual − Chapter 3, C Language Changes − 9

move your code to a machine with a smaller word size. This is because function calls made with and

without a prototype in scope may promote the arguments differently. In addition, be circumspect when

typing a function argument float, because you can encounter difficulties if the function is called without a

prototype in scope. With these issues in mind, you can solve quickly the few problems that may arise.

Function Prototypes

Function prototypes are not new to Silicon Graphics C. In traditional C, however, the implementation of

prototypes was incomplete. In one case, shown below, a significant difference still exists between the

ANSI C and the traditional C implementations of prototypes.

You can prototype functions in two ways. The most common method is to simply create a copy of the

function declaration with the arguments typed, with or without identifiers for each, such as either of the

following:

int func(int, float, unsigned [2]);

int func(int i, float f, unsigned u[2]);

You can also prototype a function by writing the function definition in prototype form, as:

int func(int i, float f, unsigned u[2])

{

 < code for func >

}

In each case, a prototype is created for func() that remains in scope for the rest of the compilation unit.

One area of confusion about function prototypes is that you must write functions that have prototypes in

prototype form. Unless you do this, the default argument promotion rules apply.

ANSI C elicits an error diagnostics for two incompatible types for the same parameter in two declarations

of the same function. Traditional C elicits an error diagnostics when the incompatibility may lead to a

difference between the bit−pattern of the value passed in by the caller and the bit−pattern seen in the

parameter by the callee.

As an example, the function func() below is declared twice with incompatible parameter profiles.

int func (float);

int func (f)

float f;

{ … }

The parameter f in func() is assumed to be type double, because the default argument promotions apply.

Error diagnostics in traditional C and ANSI C are elicited about the two incompatible declarations for

func().

The following three situations produce diagnostics from the ANSI C compiler when you use function

prototypes:

 • A prototyped function is called with one or more arguments of incompatible type. (Incompatible

types are discussed in Section 3.3.)

 C Language Reference Manual − Chapter 3, C Language Changes − 10

 • Two incompatible (explicit or implicit) declarations for the same function are encountered. This

version of the compiler scrutinizes duplicate declarations carefully and catches inconsistencies.

Note: When you use -cckr you do not get warnings about prototyped functions, unless you specify

-prototypes.

External Name Changes

Many well−known UNIX® external names that are not covered by the ANSI C standard are in the user’s

name space. These names fall into three categories:

 • names of functions in the C library

 • names defined by the linker

 • names of data areas with external linkage

Changes in Function Names

Names of functions that are in the user’s name space and that are referenced by ANSI C functions in the C

library are aliased to counterpart functions whose names are reserved. In all cases, the new name is

formed simply by prefixing an underbar to the old name. Thus, although it was necessary to change the

name of the familiar UNIX C library function write to _write, the function write remains in the library as

an alias.

The behavior of a program may change if you have written your own versions of C library functions. If,

for example, you have your own version of write, the C library continues to use its version of _write.

Changes in Linker−Defined Names

The linker is responsible for defining the standard UNIX symbols end, etext, and edata, if these symbols

are unresolved in the final phases of linking. (See end(3c) for more information.) The ANSI C linker has

been modified to satisfy references for _etext, _edata, and _end as well. The ANSI C library reference to

end has been altered to _end.

This mechanism preserves the ANSI C name space, while providing for the definition of the non−ANSI C

forms of these names if they are referenced from existing code.

Data Area Name Changes

The names of several well−known data objects used in the ANSI C portion of the C library were in the

user’s name space. These objects are listed in Table 3.1. These names were moved into the reserved name

space by prefixing their old names with an underscore. Whether these names are defined in your

environment depends on the compilation mode you are using. Recall that -xansi is the default.

Table 3−3 shows the effect of compilation mode on names and indicates whether or not these well−known

external names are visible when you compile code in the various modes. The left column has three sets of

names. Determine which versions of these names are visible by examining the corresponding column

 C Language Reference Manual − Chapter 3, C Language Changes − 11

under your compilation mode.

Table 3−3 The Effect of Compilation Mode on Names

name compilation mode

-cckr -xansi -ansi

environ environ and _environ
aliased

environ and _environ
aliased

only _environ
visible

timezone, tzname,
altzone, daylight

unchanged #define to ANSI C
name if using <
time.h>

_timezone,
_tzname, _altzone,
_daylight

sys_nerr, sys_errlist unchanged identical copies with
names _sys_nerr,
_sys_errlist

identical copies
with names
_sys_nerr,
_sys_errlist

In the Table:

 • "aliased" means the two names access the same object.

 • "unchanged" means the well−known version of the name is unaltered.

 • "identical copies" means that two copies of the object exist one with the well−known name and one

with the ANSI C name (prefixed with an underbar). Applications should not alter these objects.

 • "#define" means that a macro is provided in the indicated header to translate the well−known name to

the ANSI C counterpart. Only the ANSI C name exists. You should include the indicated header if

your code refers to the well−known name. For example, the name tzname is unchanged when

compiling -cckr, is converted to the reserved ANSI C name (_tzname) by a macro if you include

<time.h> when compiling -xansi, and is available only as the ANSI C version (_tzname) if

compiling -ansi. (Recall that -xansi is the default.)

Standard Headers

Functions in the ANSI C library are declared in a set of standard headers and are a subset of the C and

math library included in the beta release. This subset is self−consistent and is free of name space pollution,

when compiling in the pure ANSI mode. Names that are normally elements of the user’s name space but

are specifically reserved by ANSI are described in the corresponding standard header. Refer to these

headers for information on both reserved names and ANSI library function prototypes. The set of standard

headers is listed in Table 3−4.

Table 3−4 ANSI C Standard Header Files

Header Files

<assert.h> <ctype.h> <errno.h> <sys/errno.h> <float.h>

<limits.h> <locale.h> <math.h> <setjmp.h> <signal.h>

<sys/signal.h> <stdarg.h> <stddef.h> <stdio.h>

<stdlib.h> <string.h> <time.h>

 C Language Reference Manual − Chapter 3, C Language Changes − 12

