
Jacobi and Gauss-Seidel Relaxation

• Key idea for relaxation techniques intuitive.

• Associate a single equation, corresponding single unknown, ui,j, with each
mesh point in Ωh.

• Then repeatedly “sweep” through mesh, visiting each mesh point in some
prescribed order.

• Each time point is visited, adjust value of unknown at grid point so
corresponding equation is (“instantaneously”) satisfied.

• Adopt a “residual based” approach to locally satisfying the discrete equations.

• Proceed in a manner that generalizes immediately to the solution of non-linear
elliptic PDEs

• Ignore the treatment of boundary conditions (if conditions are differential, will
also need to be relaxed)

Jacobi and Gauss-Seidel Relaxation

• Again, adopt “residual-based” approach to the problem of locally satisfying
equations via relaxation

• Consider general form of discretized BVP

Lhuh = fh (1)

and recast in canonical form
Fh

[
uh

]
= 0 . (2)

• Quantity uh which appears above is the exact solution of the difference
equations.

• Can generally only compute uh in the limit of infinite iteration.

• Thus introduce ũh: “current” or “working” approximation to uh, labelling the
iteration number by n, and assuming iterative technique does converges, have

lim
n→∞

ũh = uh (3)

1

Jacobi and Gauss-Seidel Relaxation

• Associated with ũh is residual, r̃h

r̃h ≡ Lhũh − fh (4)

or in terms of canonical form (2),

r̃h ≡ Fh
[
ũh

]
. (5)

• For specific component (grid value) of residual, r̃h
i,j, drop the h superscript

r̃i,j =
[
Lhũh − fh

]
i,j
≡

[
Fh

[
uh

]]
i,j

(6)

• For model problem have

r̃i,j = h−2 (ũi+1,j + ũi−1,j + ũi,j+1 + ũi,j−1 − 4ũi,j)− fi,j (7)

• Relaxation: adjust ũi,j so corresponding residual is “instantaneously” zeroed

2

Jacobi and Gauss-Seidel Relaxation

• Useful to appeal to Newton’s method for single non-linear equation in a single
unknown.

• In current case, difference equation is linear in ũi,j: can solve equation with
single Newton step.

• However, can also apply relaxation to non-linear difference equations, then can
only zero residual in limit of infinite number of Newton steps.

• Thus write relaxation in terms of update, δũ
(n)
i,j , of unknown

ũ
(n)
i,j −→ ũ

(n+1)
i,j = ũ

(n)
i,j + δũ

(n)
i,j (8)

where, again, (n) labels the iteration number.

3

Jacobi and Gauss-Seidel Relaxation

• Using Newton’s method, have

ũ
(n+1)
i,j = ũ

(n)
i,j − r̃i,j

[
∂Fh

i,j

∂ui,j

∣∣∣
ui,j=ũ

(n)
i,j

]−1

(9)

= ũ
(n)
i,j −

r̃i,j

−4h−2
(10)

= ũ
(n)
i,j +

1
4
h2r̃i,j (11)

• Precise computation of the residual needs clarification.

• Iterative method takes an entire vector of unknowns u(n) to new estimate
u(n+1), but works on a component by component basis.

4

Jacobi and Gauss-Seidel Relaxation

• In computing individual residuals, could either choose only “old” values; i.e.
values from iteration n, or, wherever available, could use “new” values from
iteration n + 1, with the rest from iteration n.

• First approach is known as Jacobi relaxation, residual computed as

r̃i,j = h−2
(
ũ

(n)
i+1,j + ũ

(n)
i−1,j + ũ

(n)
i,j+1 + ũ

(n)
i,j−1 − 4ũ

(n)
i,j

)
− fi,j (12)

• Second approach is known as Gauss-Seidel relaxation: assuming lexicographic
ordering of unknowns, i = 1, 2, · · ·n, j = 1, 2, · · ·n, i index varies most rapidly,
residual is

r̃i,j = h−2
(
ũ

(n)
i+1,j + ũ

(n+1)
i−1,j + ũ

(n)
i,j+1 + ũ

(n+1)
i,j−1 − 4ũ

(n)
i,j

)
− fi,j (13)

• Make few observations/comments about these two relaxation methods.

5

Jacobi and Gauss-Seidel Relaxation
• At each iteration “visit” each/every unknown exactly once, modifying its value

so that local equation is instantaneously satisfied.

• Complete pass through the mesh of unknowns (i.e. a complete iteration) is
known as a relaxation sweep.

• For Jacobi, visit order clearly irrelevant to what values are obtained at end of
each iteration

• Fact is advantageous for parallelization but storage is required for both the new
and old values of ũi,j.

• For Gauss-Seidel (GS), need storage for current estimate of ũi,j: sweeping
order does impact the details of the solution process.

• Thus, lexicographic ordering does not parallelize, but for difference equations
such as those for model problem, with nearest-neighbour couplings, so called
red-black ordering can be parallelized, has other advantages.

• Red-black ordering: appeal to the red/black squares on a chess board—two
subiterations

1. Visit and modify all “red” points, i.e. all (i, j) such that mod(i + 1, 2) = 0
2. Visit and modify all “black” points, i.e. all (i, j) such that mod(i + 1, 2) = 1

6

Convergence of Relaxation Methods

• Key issue with any iterative technique is whether or not the iteration will
converge

• For Gauss-Seidel and related, was examined comprehensively in the 1960’s and
1970’s: won’t go into much detail here

• Very rough rule-of-thumb: GS will converge if linear system diagonally
dominant

• Write (linear) difference equations

Lhuh = fh (14)

in matrix form
Au = b (15)

where A is an N ×N matrix (N ≡ total number of unknowns); u and b are
N -component vectors

7

Convergence of Relaxation Methods

• A diagonally dominant if

|aij| ≤
N∑

j=1,j 6=i

|aij| , i = 1, 2, · · ·N (16)

with strict inequality holding for at least one value of i.

• Another practical issue: how to monitor convergence?

• For relaxation methods, two natural quantities to look at: the residual norm
‖r̃h‖ and the solution update norm ‖ũ(n+1) − ũ(n)‖

• Both should tend to 0 in limit of infinite iteration, for convergent method be
convergent.

• In practice, monitoring residual norm straightforward and often sufficient.

8

Convergence of Relaxation Methods

• Consider the issue of convergence in more detail.

• For a general iterative process leading to solution vector u, and starting from
some initial estimate u(0), have

u(0) → u(1) → · · · → u(n) → u(n+1) → · · · → u (17)

• For the residual vector, have

r(0) → r(1) → · · · → r(n) → r(n+1) → · · · → 0 (18)

• For the solution error, e(n) ≡ u− u(n), have

e(0) → e(1) → · · · → e(n) → e(n+1) → · · · → 0 (19)

9

Convergence of Relaxation Methods
• For linear relaxation (and basic idea generalizes to non-linear case), can view

transformation of error, e(n), at each iteration in terms of linear matrix
(operator), G, known as the error amplification matrix.

• Then have
e(n+1) = Ge(n) = G2e(n−1) = · · · = Gne(0) (20)

• Asymptotically convergence determined by the spectral radius, ρ(G):

ρ(G) ≡ max
i
|λi(G)| (21)

and the λi are the eigenvalues of G.

• That is, in general have

lim
n→∞

‖e(n+1)‖
‖en‖

= ρ(G) (22)

• Can then define asymptotic convergence rate, R

R ≡ log10

(
ρ−1

)
(23)

10

Convergence of Relaxation Methods

• Useful interpretation of R: R−1 is number of iterations needed asympotically
decrease ‖e(n+1)‖ by an order of magnitude.

• Now consider the computational cost of solving discrete BVPs using relaxation.

• “Cost” is to be roughly identified with CPU time, and want to know how cost
scales with key numerical parameters

• Here, assume that there is one key parameter: total number of grid points, N

• For concreteness/simplicity assume following

1. The domain Ω is d-dimensional (d = 1, 2, 3 being most common)
2. There are n grid points per edge of the (uniform) discrete domain, Ωh

• Then total number of grid points, N , is

N = nd (24)

• Further define the computational cost/work, W ≡ W (N) to be work required
to reduce the error, ‖e‖ by an order of magnitude; definition suffices to
compare methods

11

Convergence of Relaxation Methods

• Clearly, best case situation is W (N) = O(N).

• For Gauss-Seidel relaxation, state without proof that for model problem (and
for many other elliptic systems in d = 1, 2, 3), have

ρ (GGS) = 1−O(h2) (25)

• Implies that relaxation work, WGS, required to reduce the solution error by
order of magnitude is

WGS = O
(
h−2 sweeps

)
= O

(
n2 sweeps

)
(26)

• Each relaxation sweep costs O(nd) = O(N), so

WGS = O
(
n2N

)
= O

(
N2/dN

)
= O

(
N (d+2)/d

)
(27)

12

Convergence of Relaxation Methods

• Tabulating the values for d = 1, 2 and 3

d WGS

1 O(N3)
2 O(N2)
3 O(N5/3)

• Scaling improves as d, increases, but O(N2) and O(N5/3) for the cases d = 2
and d = 3 are pretty bad

• Reason that Gauss-Seidel is rarely used in practice, particularly for large
problems (large values of n, small values of h).

13

Successive Over Relaxation (SOR)

• Historically, researchers studying Gauss-Seidel found that convergence of the
method could often be substantially improved by systematically “over
correcting” the solution, relative to what the usual GS computation would give

• Algorithmically, change from GS to SOR is very simple, and is given by

ũ
(n+1)
i,j = ω û

(n+1)
i,j + (1− ω) ũ

(n)
i,j (28)

• Here, ω is the overrelaxation parameter, typically chosen in the range

1 ≤ ω < 2, and û
(n+1)
i,j is the value computed from the normal Gauss-Seidel

iteration.

• When ω = 1, recover GS iteration itself: for large enough ω, e.g. ω ≥ 2,
iteration will become unstable.

• At best, the use of SOR reduces number of relaxation sweeps required to drop
the error norm by an order of magnitude to O(n):

WSOR = O (nN) = O
(
N1/dN

)
= O

(
N (d+1)/d

)
(29)

14

Successive Over Relaxation (SOR)

• Again tabulating the values for d = 1, 2 and 3 find

d WSOR

1 O(N2)
2 O(N3/2)
3 O(N4/3)

• Thus note that optimal SOR is not unreasonable for “moderately-sized” d = 3
problems.

• Key issue: How to choose ω = ωOPT in order to get optimal performance

• Except for cases where ρGS ≡ ρ(GGS) is known explicitly, ωOPT needs to be
determined empirically on a case-by-case and resolution-by-resolution basis.

• If ρGS is known, then one has

ωOPT =
2

1 +
√

1− ρGS
(30)

15

Relaxation as Smoother (Prelude to Multi-Grid)

• Slow convergence rate of relaxation methods such as Gauss-Seidel −→ not
much use for solving discretized elliptic problems

• Now consider an even simper model problem to show what relaxation does tend
to do well

• Will elucidate why relaxation is so essential to the multi-grid method.

• Consider a one dimensional (d = 1) “ellliptic” model problem, i.e. an ordinary
differential equation to be solved as a two-point boundary value problem.

• Equation to be solved is

Lu(x) ≡ d2u

d2x
= f(x) (31)

where f(x) is specified source function.

16

Relaxation as Smoother (Prelude to Multi-Grid)

• Solve (31) on a domain, Ω, given by

Ω : 0 ≤ x ≤ 1 (32)

subject to the (homogeneous) boundary conditions

u(0) = u(1) = 0 (33)

• To discretize this problem, introduce a uniform mesh, Ωh

Ωh = {(i− 1)h, i = 1, 2, · · ·n} (34)

where n = h−1 + 1 and h, as usual, is the mesh spacing.

• Now discretize (31) to O(h2) using usual FDA for second derivative, getting

ui+1 − 2ui + ui−1

h2
= fi , i = 2, 3, · · ·n− 1 (35)

17

Relaxation as Smoother (Prelude to Multi-Grid)

• Last equations, combined with boundary conditions

u1 = un = 0 (36)

yield set of n linear equations in n unknowns, ui, i = 1, 2, · · ·n.

• For analysis, useful to eliminate u1 and un from the discretization , so that in
terms of generic form

Lhuh = fh (37)

uh and fh are n− 2-component vectors; Lh is an (n− 2)× (n− 2) matrix.

• Consider a specific relaxation method, known as damped Jacobi, chosen for
ease of analysis, but representative of other relaxation techniques, including
Gauss-Seidel.

• Using vector notation, damped Jacobi iteration is given by

ũ(n+1) = ũ(n) − ωD−1r̃(n) (38)

where ũ is the approximate solution of the difference equations, r̃ is the residual
vector, ω is an (underrelaxation) parameter, and D is the main diagonal of Lh.

18

Relaxation as Smoother (Prelude to Multi-Grid)

• For model problem, have
D = −2h−21 (39)

• Note that when ω = 1, this is just the usual Jacobi relaxation method discussed
previously.

• Examine the effect of (38) on residual vector, r̃.

• Have

r̃(n+1) ≡ Lhũ(n+1) − fh (40)

= Lh
(
ũ(n) − ωD−1r̃(n)

)
− fh (41)

=
(
1− ωLhD−1

)
r̃(n) (42)

≡ GRr̃(n) (43)

where the residual amplification matrix, GR, is

GR ≡ 1− ωLhD−1 (44)

19

Relaxation as Smoother (Prelude to Multi-Grid)

• Have following relation for residual at the n-th iteration, r̃(n), in terms of initial
residual, r̃(0):

r̃(n) = (GR)n r̃(0) (45)

• Now, GR, has complete set of orthogonal eigenvectors, φm , m = 1, 2, · · ·n− 2
with corresponding eigenvalues µm.

• Thus, can expand initial residual, r̃(0), in terms of the φm:

r̃(0) =
n−2∑
m=1

cmφm (46)

where the cm are coefficients.

• Immediately yields following expansion for the residual at the n-th iteration:

r̃(n) =
n−2∑
m=1

cm (µm)n
φm . (47)

20

Relaxation as Smoother (Prelude to Multi-Grid)
• Thus, after n sweeps, the m-th “Fourier” component of the initial residual

vector, r̃(0) is reduced by a factor of (µm)n.

• Now consider the specific value of the underrelaxation parameter, ω = 1/2.

• Left as exercise to verify that eigenvectors, φm are

φm = [sin (πmh) , sin (2πmh) , · · · , sin ((n− 2)πmh)]T , m = 1, 2, · · · , n− 2
(48)

while eigenvalues, µm, are

µm = cos2
(

1
2
πmh

)
, m = 1, 2, · · · , n− 2 (49)

• Note that each eigenvector, φm, has associated “wavelength”, λm

sin (πmx) = sin (2πx/λm) . (50)

• Thus

λm =
2
m

(51)
21

Relaxation as Smoother (Prelude to Multi-Grid)

• As m increases (and λm decreases), “frequency” of φm increases, and,
from (49), the eigenvalues, µm, decrease in magnitude.

• Asymptotic convergence rate of the relaxation scheme is determined by largest
of the µm, µ1

µ1 = cos2
(

1
2
πh

)
= 1− 1

4
π2h2 + · · · = 1−O(h2) . (52)

• Implies that O(n2) sweeps are needed to reduce norm of residual by order of
magnitude.

• Thus see that asymptotic convergence rate of relaxation scheme is dominated
by the (slow) convergence of smooth (low frequency, long wavelength)
components of the residual, r̃(n), or, equivalently, the solution error, ẽ(n).

• Comment applies to many other relaxation schemes applied to typical elliptic
problems, including Gauss-Seidel.

22

Definition of “High Frequency”

λ = 4h

Ω

Ω

h

2h

• Illustration of the definition of “high frequency” components of the residual or
solution error, on a fine grid, Ωh, relative to a coarse grid, Ω2h.

• As illustrated in the figure, any wave with λ < 4h cannot be represented on the
coarse grid (i.e. the Nyquist limit of the coarse grid is 4h.)

23

Relaxation as Smoother (Prelude to Multi-Grid)

• Highly instructive to consider what happens to high frequency components of
the residual (or solution error) as the damped Jacobi iteration is applied.

• Per previous figure, are concerned with eigenvectors, φm, such that

λm ≤ 4h −→ mh ≥ 1
2

(53)

• In this case, have

µm = cos2
(

1
2
πmh

)
≤ cos2

(π

4

)
≤ 1

2
(54)

• Thus, all components of residual (or solution error) that cannot be represented
on Ω2h get supressed by a factor of at least 1/2 per sweep.

• Furthermore, rate at which high-frequency components are liquidated is
independent of the mesh spacing, h.

24

Relaxation as Smoother (Prelude to Multi-Grid)

• SUMMARY:

• Relaxation tends to be a dismal solver of systems Lhuh = fh, arising from
FDAs of elliptic PDEs.

• But, tends to be a very good smoother of such systems—crucial for the
success of multi-grid method.

25

Multi-grid: Motivation and Introduction

• Again consider model problem

u(x, y)xx + uyy = f(x, y) (55)

solved on the unit square subject to homogeneous Dirichlet BCs

• Again discretize system using standard 5-point O(h2) FDA on a uniform n× n
grid with mesh spacing h

• Yields algebraic system Lhuh = fh.

• Assume system solved with iterative solution technique: start with some initial
estimate ũ(0), iterate until ‖r̃(n)‖ ≤ ε.

• Several questions concerning solution of the discrete problem then arise:

1. How do we choose n (equivalently, h)?
2. How do we choose ε?
3. How do we choose ũ(0)?
4. How fast can we “solve” Lhuh = fh?

• Now provide at least partial answers to all of these questions.
26

Multi-grid: Motivation and Introduction

1) Choosing n (equivalently h)

• Ideally, would choose h so that error ‖ũ− u‖, satisfies ‖ũ− u‖ < εu, where εu

is a user-prescribed error tolerance.

• From discussions of FDAs for time-dependent problems, already know how to
estimate solution error for essentially any finite difference solution.

• Assume that FDA is centred and O(h2)

• Richardson tells us that for solutions computed on grids with mesh spacings h
and 2h, expect

uh ∼ u + h2e2 + h4e4 + · · · (56)

u2h ∼ u + 4h2e2 + 16h4e4 + · · · (57)

27

Multi-grid: Motivation and Introduction

• So to leading order in h, error, uh − u, is

e ∼ u2h − uh

3h2
(58)

• Thus, basic strategy is to perform convergence tests—comparing finite
difference solutions at different resolutions, increase (or decrease) h until the
level of error is satisfactory.

28

Multi-grid: Motivation and Introduction

2) Choosing ε (εr)

• Consider following 3 expressions:

Lhuh − fh = 0 (59)

Lhũh − fh = r̃h (60)

Lhu− fh = τh (61)

where uh is exact solution of finite difference equations, ũh is approximate
solution of the FDA, u is the (exact) solution of the continuum problem,
Lu− f = 0.

• (59) is simply our FDA written in a canonical form, (60) defines the residual,
while (61) defines the truncation error.

29

Multi-grid: Motivation and Introduction

• Comparing (60) and (61), see that it is natural to stop iterative solution
process when

‖r̃h‖ ∼ ‖τh‖ (62)

• Leaves problem of estimating size of truncation error

• Will see later how estimates of τh arise naturally in multi-grid algorithms.

30

Multi-grid: Motivation and Introduction

3) Choosing ũ(0)

• Key idea is to use solution of coarse-grid problem as initial estimate for
fine-grid problem.

• Assume that have determined satisfactory resolution h; i.e. wish to solve

Lhuh = fh (63)

• Then first pose and solve (perhaps approximately) corresponding problem (i.e.
same domain, boundary conditions and source function, f) on mesh with
spacing 2h.

• That is, solve
L2hu2h = f2h (64)

then set initial estimate, (uh)(0) via

(
uh

)(0)
= Īh

2h u2h (65)

31

Multi-grid: Motivation and Introduction

• Here Īh
2h is known as a prolongation operator and transfers a coarse-grid

function to a fine-grid.

• Typically, Īh
2h will perform d-dimensional polynomial interpolation of the

coarse-grid unknown, u2h, to a suitable order in the mesh spacing, h.

• Chief advantage of approach is that solution of coarse-grid problem should be
inexpensive to solve relative to fine-grid problem

• Specifically, cost of solving on the coarse-grid should be no more than 2−d of
cost of soving the fine-grid equations.

• Furthermore, can apply basic approach recursively: initialize u2h with u4h

result, initialize u4h with u8h etc

• Thus lead to consider a general multi-level technique for treatment of
discretized elliptic PDEs

• Solution of a fine-grid problem is preceded by solution of series of coarse-grid
problems.

32

Multi-grid: Motivation and Introduction

• Label each distinct mesh spacing with an integer `

` = 1, 2, · · · `max (66)

where ` = 1 labels coarsest spacing h1, ` = `max labels finest spacing h`max.

• Almost always most convenient (and usually most efficient) to use mesh
spacings, h`, satisfying

h`+1 =
1
2
h` (67)

• This implies
n`+1 ∼ 2dn` . (68)

• Will assume in following that multi-level algorithms use 2:1 mesh hierarchies

• Use ` itself to denote resolution associated with a particular finite difference
approximation, or transfer operator.

• That is, define u` via
u` = uh` (69)

33

Multi-grid: Motivation and Introduction

• Could then rewrite (65) as
u`+1 = Ī`+1

` u` (70)

• Pseudo-code for general multi-level technique:

for ` = 1 , `max

if ` = 1 then
u` := 0

else
u` := Ī`

`−1u
`−1

end if
solve iteratively (u`)

end for

• Very simple and intuitive algorithm: when novices hear term “multi-grid”,
sometimes think that this sort of approach is all that is involved.

• However, multi-grid algorithm uses grid hierarchy for entirely different, and
more essential purpose!

34

Multi-grid: Motivation and Introduction

4) How fast can we solve Lhuh = fh?

• Answer to this question is short and sweet.

• Properly constructed multi-grid algorithm can solve discretized elliptic equation
in O(N) operations!

• This is, of course, computationally optimal: main reason that multi-grid
methods have become such an important tool for numerical
analysts—numerical relativists included.

35

