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1.1 Introduction

In this project, after the derivation and verification of some equations of motion and other
results, you will use RNPL-generated finite-difference codes to study the spherically-symmetric
dynamics of a massless scalar field on a Schwarzschild (black hole) background—i.e. the “back
reaction” of the scalar field will be ignored, so the spacetime will be fixed, and completely
known a priori. The chief physics which this model describes, and the physics on which you
will focus, is the absorption and/or scattering of spherically-symmetric pulses (“S-waves”) of
scalar radiation which “infall” onto a black hole, and whose self-gravitation can be ignored.
You will solve the problem in the 3+1 form of ingoing Eddington-Finkelstein coordinates (see
e.g. MTW [1], 31.4 & Box 31.2 for a general discussion of Eddington-Finkelstein coordinates
and corresponding line-elements), which will allow you to excise the interior of the black
hole simply by limiting the spatial domain of integration to the region r ≥ 2M . Because
the inner boundary, r = 2M , of the spatial domain is actually null, in principle no special
boundary conditions are needed there for the scalar field—one simply applies the equations
of motion (the covariant wave equation) up to and including r = 2M .

Units and Conventions We adopt MTW units (in particular G = c = 1) and metric
conventions. Latin indices from near the start of the alphabet (a, b, c, · · ·) are spacetime
abstract indices (See Wald [2], “Notation and Conventions” for an explanation); Greek
indices label 4-dimensional tensor components and range over the spacetime values 0, 1, 2,
3; Latin indices from near mid-alphabet (i, j, k, · · ·) label 3-dimensional tensor components
and take on the spatial values 1, 2, 3. The Einstein summation convention applies to both
types of component index.

1.2 The Wave Equation for a General, Static, Spherically Symmetric Metric

Consider the following general 3+1 form of the static, spherically symmetric, vacuum metric
(i.e. the Schwarzschild spacetime):

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2β dtdr + a2dr2 + r2

(
dθ2 + sin θ2dφ2

)
(1)

where α ≡ α(r), β = β(r) and a = a(r). In 3+1 language, α is the known as the lapse
function, while β is the radial component of the shift vector, i.e. βi = (β, 0, 0), βi ≡ γijβ

j =

1



(a2β, 0, 0), where γij is the intrinsic metric of the 3-dimensional, spacelike hypersurfaces
defined by t = const.. Specifically, we have γij ≡ diag(a2, r2, r2 sin2 θ)

We note that (1) is not the most general form for a static spherically-symmetric spacetime;
we have chosen a so-called “areal” radial coordinate—i.e. r provides a direct measure of the
area, 4πr2, of r = const. spheres.

Problem 1a) Show that the characteristics (null geodesics) of (1) are given by(
dr

dt

)
±

= −β ± α

a
. (2)

Problem 1b) Show that, given the metric (1), the massless Klein-Gordon equation (the
wave equation):

∇a∇aφ (r, t) = 0 (3)

can be written as the pair of first-order-in-time (3+1, “Hamiltonian”) equations

∂tΦ = ∂r

(
βΦ +

α

a
Π
)
, (4)

∂tΠ =
1

r2
∂r

(
r2
(
βΠ +

α

a
Φ
))

, (5)

where

Φ (r, t) ≡ ∂rφ , (6)

Π (r, t) ≡ a

α
(∂tφ− β ∂rφ) . (7)

Hints Use the fact that (3) can be rewritten as

1√
−g

∂

∂xν

(
√
−ggµν ∂φ

∂xµ

)
= 0 (8)

where g is the determinant of the 4-metric, and where the components gµν of the inverse
4-metric are given by (verify)

gµν =


−α−2 βα−2 0 0
βα−2 a−2 − β2α−2 0 0

0 0 r−2 0
0 0 0 r−2 sin−2 θ

.

 (9)
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1.3 The Schwarzschild Solution in Ingoing Eddington-Finkelstein Coordinates

Now consider the usual Schwarzschild form of (1), and bear in mind that, as discussed in
the introduction, we will be restricting attention to r ≥ 2M :

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 . (10)

If we now define the “Regge-Wheeler tortoise coordinate”, r?,

r? ≡ r + 2M ln
(
r

2M
− 1

)
, (11)

then u and v defined by

u = t− r? , (12)

v = t+ r? . (13)

are outgoing (u) and ingoing (v) null coordinates.

Problem 1c) Show that if we adopt a timelike coordinate, t̃, based on the ingoing null
coordinate, v, as follows

t̃ = v − r = t+ 2M ln
(
r

2M
− 1

)
, (14)

then the Schwarzschild metric (10) takes the ingoing Eddington-Finkelstein (IEF) form

ds2 = −
(

1− 2M

r

)
dt̃2 +

4M

r
dt̃dr +

(
1 +

2M

r

)
dr2 + r2dΩ2 . (15)

Note that this form differs from the usually quoted IEF metric—for example, from MTW,
Box 31.2, equation (2):

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2 , (16)

in that, in (15) we adopt a timelike coordinate, t̃, rather than the null coordinate, v. Relative
to the original Schwarzschild form (10), we can summarize the IEF coordinates as follows:

• We maintain an areal radial coordinate, r—i.e. r continues to provide a direct measure
of proper surface area.

• We choose our time coordinate, t̃, so that the ingoing tangent vector:(
∂

∂t̃

)a
−
(
∂

∂r

)a
,

is null.

Observe the key property of IEF coordinates—namely that, as is evident from (15), all
metric components, gµν are perfectly well behaved, both on the horizon of the black hole,
r = 2M , and in the exterior region, r > 2M .

Let t now and in the following denote IEF time, so that we have

ds2 = −
(

1− 2M

r

)
dt2 +

4M

r
drdt+

(
1 +

2M

r

)
dr2 + r2dΩ2 . (17)
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Problem 1d) Show that, in terms of the general 3+1 form (1), we have

α =
(

r

r + 2M

)1/2

, (18)

a = α−1 =
(

r

r + 2M

)−1/2

, (19)

β =
2M

r + 2M
. (20)

1.4 Asymptotics—Radiation Boundary Conditions

As r →∞, the IEF metric (17) approaches the Minkowskii metric in spherical coordinates

dss = −dt2 + dr2 + r2dΩ2 . (21)

Problem 1e) Show that in this limit, the wave equation (3) can be written

∂tt (rφ) = ∂rr (rφ) . (22)

Clearly, the outgoing solution of (22) is

(rφ) (r, t) = g (t− r) , (23)

where g is an arbitrary function of one variable. Explicitly introducing the characteristic
(wave) speed, c+, associated with the outgoing solution (we have implicitly been assuming
c2

+ = c2
− = c2 = 1), (23) becomes

(rφ) (r, t) = g (c+t− r) , (24)

Now, from Problem 1a), we have that, in the curved spacetime case

c+ = −β +
α

a
, (25)

so that, asymptotically, we should expect

(rφ) (r, t) = g
((
−β +

α

a

)
t− r

)
, (26)

which we can also express as

∂t (rφ) +
(
−β +

α

a

)
∂r (rφ) = 0 . (27)

When solving the wave equation (4)-(5) on a finite spatial domain 2M ≤ r ≤ R, we can
impose (27) (and other equations derived using it) as a boundary condition at r = R. Such
a condition is called an outgoing radiation boundary condition, or, often, a Sommerfeld
condition.
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1.5 Initial Data

With the wave equation written in the first order form (4)-(5), we must supply initial con-
ditions

Φ (r, 0) = Φ0(r) , (28)

Π (r, 0) = Π0(r) , (29)

where Φ0(r) and Π0(r) are arbitrary functions. Since we are most interested in studying the
scattering of pulses of scalar radiation off of, and into, the black hole, we focus attention on
data which, at the initial time, is “as ingoing as possible”.

Assume that the initial configuration of the scalar field itself, φ(r, 0) = φ0(r), describes
some “pulse” shape—i.e. that φ0(r) (effectively) has compact support—such as a “Gaussian”

φ0 (r; A, r0,∆) = A exp

(
−
(
r − r0

∆

)2
)
, (30)

(where A, r0 and ∆ are adjustable parameters). Further make the approximation that

∂t (rφ) (r, 0)− ∂r (rφ) (r, 0) = 0 . (31)

This approximation is exact for an ingoing pulse as the support of the pulse →∞, and, for
finite r, amounts to ignoring curvature–backscatter in attempting to set up precisely ingoing
initial data.

Problem 1f) From (28), (29) and (31), derive initial conditions, Φ0(r) and Π0(r), in terms
of φ0(r) and dφ0(r)/dr.

1.6 A Conserved Mass for the Model

Recall that the stress energy tensor, Tab, for the scalar field satisfying the wave equation (3)
is

Tab = ∇aφ∇bφ−
1

2
gab∇cφ∇cφ . (32)

Consider a foliation, Σt, of spacetime with associated unit normal field na. Assume, as is the
current case, that the spacetime has a timelike Killing vector field, ta. Then we can define a
energy-momentum 4-vector, Ja

Ja ≡ T abtb , (33)

which is conserved

∇aJ
a = ∇a

(
T abtb

)
=
(
∇aT

ab
)
tb + T ab∇atb =

(
∇aT

ab
)
tb + T ab∇(atb) = 0 , (34)

by virtue of the conservation of T ab and Killing’s equations. We integrate ∇aJ
a over a

spacetime volume and apply Gauss’s theorem (see Wald B.2):∫
V
∇aJ

a =
∫
∂V
JaNa = 0 , (35)

5



where ∂V is the (three-dimensional) boundary of the integration region, Na is the normal
vector to ∂V , and both integrals are taken with respect to the natural volume elements on
the respective manifolds. If we now take our “Gaussian pillbox” to be the region bounded
by any two hypersurfaces, Σt, Σt′ , then assuming that JaNa → 0 at spatial infinity (the
timelike part of the pillbox), we have∫

Σt

Jana −
∫

Σt′
Jana = 0 , (36)

or
m∞ =

∫
Σt

Jana = constant . (37)

i.e. m∞ is our conserved mass.

Using our current 3+1 metric (1) we have

m∞ =
∫
T µνtνnµ dΣ =

∫
T µνt

νnµ dΣ =
∫

(−αT tt)(ar2 sin2 θ) drdθdφ = 4π
∫
−r2αaT tt dr

(38)
where we have used tµ = (1, 0, 0, 0) and nµ = (−α, 0, 0, 0). For the purposes of monitoring our
calculation, it is convenient to define a space- and time-dependent “mass aspect” function,
m(r, t), via

m (r, t) =
∫ r

2M

dm

dr̃
(r, t) dr̃ , (39)

dm

dr
≡ −4πr2αaT tt . (40)

Problem 1g) Verify the following expression for dm/dr:

dm

dr
= 4πr2

(
α

2a

(
Φ2 + Π2

)
+ βΦΠ

)
. (41)

1.7 Solution of the Equations of Motion

Problem 1h) Write an RNPL program to solve the wave equation

∂tΦ = ∂r

(
βΦ +

α

a
Π
)
,

∂tΠ =
1

r2
∂r

(
r2
(
βΠ +

α

a
Φ
))

,

Φ (r, t) ≡ ∂rφ ,

Π (r, t) ≡ a

α
(∂tφ− β ∂rφ) ,
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on the Schwarzschild background, and in IEF coordinates

α =
(

r

r + 2M

)1/2

,

a = α−1 =
(

r

r + 2M

)−1/2

,

β =
2M

r + 2M
.

Take as the solution domain

2M ≤ r ≤ R 0 ≤ t ≤ T , (42)

and use ingoing initial data and outgoing radiation boundary conditions as discussed above.
It will be up to you to choose a value (or values) of T appropriate to the dyamics of the
particular evolutions that you consider.

It is recommended that you first quickly work through the on-line tutorial Solving a
Simple 1d Wave Equation with RNPL [4] available via course web page [3], and then use
the RNPL code from that example as a template for your work. In particular, as in w1dcn

your solution should use a Crank-Nicholson difference scheme, with O(h2) centred FDAs
for the spatial derivatives in the interior of the domain, and O(h2) forwards and backwards
approximations, as appropriate, for spatial derivatives at the domain boundaries.

Once you have your program implemented and thoroughly tested (including convergence
testing, as described in [4]), extend your code so that it computes dm/dr and m defined
by (41) and (39) respectively. In doing this, you may wish to refer to the w1dcnm example,
also documented on-line via the course web page, which illustrates the incorporation of
external Fortran code into RNPL.

When you are satisfied that your code is working properly, set M = 1, R = 100, A = 1
and r0 = 50. Then compute what values of ∆ result in 25%, 50% and 75% absorption,
respectively, of the total initial mass of the scalar pulse (you should determine the values of
∆ to about 10% accuracy or so).

If time permits, you may wish to make a more systematic survey of parameter space
(using ∆ as the parameter), and make a plot using gnuplot or sm (supermongo) showing
the fractional absorption of pulse energy as a function of ∆.
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