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Lecture Summary

• Example error analysis using the advection equation

– Richardson expansions

• Convergence tests

• Independent residual evaluation

• Convergence tests & independent residual evaluation 
problem for model problem (NKG)

• Where to next?

• APOLOGIES:  No Q-balls, but additional lecture on the 
topic will be available on-line eventually



Sample Error/Convergence Analysis
The Advection Equation

• Let us consider the solution of the advection equation

with periodic boundary conditions: i.e. with x = 0 and x = 1 
identified, and where u0(x) is the initial data function

• Note that u0(x) must be compatible with periodicity, i.e. we 
must have u0(1) = u0(0)

• Given the initial data  fcn, we can immediately write down 
the full solution 

where mod is the modulus function that “wraps” 
x + a t,  t > 0, onto the unit interval
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• Due to the simplicity and solubility of this problem, we will 
see that we can perform a rather complete closed-form
treatment of the convergence of a simple FDA of this eqn

• The point of this exercise, however, is not to advocate 
parallel closed-form treatments for more complicated (i.e. 
realistic and/or previously unsolved)  problems

• Rather, the key idea to be extracted from what follows is 
that, in principle and, more importantly, in practice

• This observation has huge ramifications, one of which is 
that there is no excuse for publishing solutions of FDAs that 
do not include error bars, or their equivalents.

The error, of an FDA is no less computable than

                      the solution
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• Let us first introduce some difference operators for the 
usual  O(h2) centred difference approximations of ∂t and
∂x

• Again, we take

and hold λ fixed as h varies, so that, as usual, our FDA is 
characterized by the single discretization/approximation 
parameter, h
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• First key idea behind error analysis:  Want to view the 
soln of the FDA as a continuum problem

• Therefore, we express both the difference operators and 
the FD solution as asymptotic series (in h) of differential 
operators, and continuum fcns, respectively

• Exercise: Show that we have the following expansions for 
Dt and Dx
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• In terms of the general abstract formulation introduced in 
the second lecture, we have
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• Second key idea behind error analysis:

Richardson expansions

• Appeal to LF Richardson’s old (1910!) observation that the 
solution, uh , of any FDA which

1. Uses a uniform mesh structure with discretization
parameter, h

2. Is completely centred

should have the following expansion in the limit of 
vanishing h
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• In the above expansion, u is the continuum solution, 
satisfying Lu = 0, while e2, e4 etc. are (continuum) fcns
that do not depend on h!!

• The above expansion is the key expansion from which 
almost all error analysis of FDAs derives

• In the case that the FDA is not completely centred, one 
expects a modified expansion

• In particular, for first order schemes, will have
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• Also note that the existence of a Richardson expansion is 
completely compatible with the naïve assumption 
mentioned earlier, namely that

• However, the Richardson form obviously contains much
more information than “second order truncation error 
should imply second order solution error” or, more, 
generally, that “p-the order truncation error should imply
p-th order solution error”

and is essentially the only basic relationship needed to fully 
analyze error in arbitrary FDAs of arbitrary systems of PDEs 
with smooth solutions!!!
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• Let us now return to the advection equation to see how the 
error analysis flows from the Richardson expansion

• We start from the FDA Lh uh – fh = 0, and replace both Lh

and fh with continuum expansions

• Now, since h is arbitrary, the terms in the above must 
vanish order-by-order in h

• At O(1) (zeroth-order), have

which is simply a statement of the consistency of the FDA
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• More interestingly, at O(h2) (second-order), we find

• Viewing u as a “known” fcn, then this is simply a PDE for 
the leading order error function, e2

• Moreover, the PDE governing e2 is of precisely the 
same nature as the original PDE, (∂t – a∂X)u=0
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• In fact, we can solve

explicitly for e2

• Given the “natural” initial conditions

(i.e. we initialiaze the FDA with the exact solution so that 
uh =u at t = 0), and defining q(x + at)

we have (exercise: verify the following)
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• (In passing we note that, as is typical for any FDA of a time 
dependent program, we have linear growth of the finite 
difference error with time (to leading order in h)

• Now, the above analysis can be extended to higher order in 
h—what results when one does this is an entire (infinite) 
hierarchy of differential equations for u and the error 
functions e2 , e4 , e6 …

• Indeed, it is extremely useful to keep the following view in 
mind

When one solves an FDA of a PDE, one is not solving some 
system that is “simplified” relative to the PDE; rather, one is 
solving a much richer system consisting of an infinite 
hierarchy of PDEs, one for each fcn appearing in the 
Richardson expansion
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Convergence Tests

• For general systems of PDEs we will not be able to solve the 
PDE that governs u, let alone the PDE that governs e2—
otherwise we wouldn’t be considering the FDA in the first 
place, of course!

• However, it is precisely in this instance that the true power 
of Richardson’s observation becomes most evident!

• The key observation is that by adopting the Richardson 
expansion as a “working hypothesis”—i.e. we assume that 
the solution of our PDEs will admit a Richardson 
expansion—and computing FD solns using the same initial 
data, but with differing values of h, we can learn a great 
deal about the error in our calculations

• The whole game of investigating the manner in which a 
particular FDA does or does not converge (i.e. by 
examining carefully what happens as h is varied) is called 
convergence testing



• It must be stressed at the outset that there are no “hard and 
fast” rules for convergence testing (i.e. what precisely 
constitutes “good” convergence, what precisely one should 
monitor in a given calulation …)

Rather, one tends to tailor the tests to the specifics of the 
problem at hand, and being largely an empirical approach, one 
gains experience and intuition for convergence tests as one 
works through more and more problems

• However, we will proceed under the assumption that the 
Richardson expansion, in some form, always underlies 
convergence analysis of smooth solutions deriving from FDAs 
of PDEs

• Should a Richardson expansion not underly a FDA (and I have 
had arguments with referees about this point, especially in the 
context of turbulent flows and the like, then all bets re 
convergence are off, to adopt the vernacular and, indeed, one 
should be suspicious of the efficacy of the FDA approach for 
the PDE(s) of interest---and, yes, this means that fully 
developed turbulent hydrodynamics has been, and continutes
to be a real bear!



• A simple example of a convergence test, and the one most 
commonly used in numerical relativity, for example, is as 
follows

• We compute three distinct FD solns uh , u2h and u4h at 
resolutions h, 2h and 4h, respectively, but using the same 
initial data (as naturally expressed on the 3 distinct FD 
meshes)

• We also will assume (not least since it is the usual case) 
that the FD meshes “line up”, i.e. that the 4h grid points 
are a subset of the 2h points which, in turn, are a subset of 
the h points

• Thus, for example, the 4h points constitute a common set 
of events (tn , xj ) at which specific grid fcn values can be 
directly (i.e. no interpolation required) and meaningfully 
compared to one another



• The Richardson expansion tells us that we should expect

• We then compute a quantity, Q(t), which we will call a 
convergence factor , as follows

where         is any suitable discrete spatial norm, such as 
the l2 norm (RMS value)
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• It is simple to show (exercise) that if the FD scheme is 
converging we should find

• In practice, one can use additional levels of discretization, 
8h, 16h, etc. to extend this test to look for “trends”
in Q(t) and, in short, to convince oneself (and, with luck, 
others),  that the FDA really is converging
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• Additionally, once convergence of an FDA has been 
established, then the point-wise subtraction of any two 
solns computed at different resolutions immediately 
provides an estimate of the level of error in both

• For example, assume that our FD solution uh is converging 
as O(h2), and that we have computed u2h as well

• Then Richardson tells us that we have
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Independent Residual Evaluation

• The astute student will note that the following question 
concerning convergence testing generically arises 

“OK, so you’ve established that uh is converging as h tends 
to 0—great, but how do you know that what uh is 
converging to is u, the desired solution of the continuum 
problem?”

• The pièce de resistance of convergence testing—and the 
technique that allows me to claim that I can determine 
whether anybody’s solution to any set of differential 
equations using any FDA is converging to the desired 
solution—is independent residual evaluation (MWC 1992)

• Even better, after this lecture you will, in principle at least, 
have this ability as well!



• As is the case for virtually everything that I have discussed 
in these lectures, the basic idea underlying independent 
residual evaluation is very simple

• Again, we start with the abstract description of our 
continuum PDE(s)

and the corresponding FDA

• We further assume that we have implemented a program to 
solve the FDA (again, for the sake of discussion, we will 
assume that the FDA is O(h2) accurate), and that we have 
determined that it is converging to some continuum fcn as 
O(h2)
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• Again, however, a successful convergence test does not
guarantee that the continuum fcn we are computing in the 
limit is actually u

• Note that implicit in the implementation of the solution of 
the FDA is the fact that, particularly for multi-dimensional 
work and/or implicit and/or multi-component FDAs, 
considerable “work” (i.e. analysis and coding) is generally 
involved in setting up and solving the algebraic eqns for uh

• To establish whether our FD soln is or is not converging to
u, we consider a distinct (i.e. independent) discretization of 
the PDE, which we denote by

• The only thing that we need from this FDA for the purposes 
of the independent residual test is the new FD operator

ˆ 0ˆh h hL u f
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• As was the case for Lh, we can expand this independent FD 
operator in powers of the mesh spacing

where                are higher order (involve higher order 
derivatives than L) differential operators

• To perform the independent residual test, we simply take 
the new operator and apply it to our putative FD soln, uh, 
and investigate what happens as h tends to 0

• If uh is converging to the continuum solution, u, we will 
have
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• By applying the independent discretization to our numerical 
solution we will thus compute

Thus, if uh is converging to u, the independent 
residual calculation will produce a residual-like 
quantity that converges quadratically as h tends to 
0!!!!
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• Conversely, assume that there is a problem in the 
derivation and/or implementation of the (original) FDA,
Lh uh – fh =0 , but that there is still convergence, i.e., for 
example

• Then, we must be able to write something like

where the crucial fact/observation is that 
the error, uh – u, must have an O(1) component, e0
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• In this case we will compute

• The probability that Le0 vanishes is many, many, many 
orders of magnitude smaller than that of Canada winning 
the World Cup in anyone in this lecture room’s lifetime, and 
we will thus not observe the expected convergence

• Rather, as we make the grid finer and finer, we will observe
that             is tending to a finite (i.e. O(1)) quantity—a 
sure sign that something is wrong! 
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• Again, the astute student will say

Wait a second!  How do I know that a measurement of an 
O(1) independent residual doesn’t indicate that I’ve 
screwed up the implementation of the independent residual 
calculation, rather than the orginal FDA?

• The answer, of course, is “I don’t!”

• However, a key point in this regard is that because    is only 
used a posteriori on a computed solution—and, in 
particular, is never used to compute   —it is a relatively 
easy matter to ensure that     has been implemented in an 
error-free fashion, ideally using symbolic computing (Maple, 
Mathematica, etc.)  
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• Also importantly, many of the restrictions one must place 
on the “real” discretization Lh uh = fh such as the need for 
the FDA to be stable, or the ease of solution of the resulting 
algebraic eqns, do not apply to 

• Indeed, I emphasize to students that an independent 
residual is analogous to the scaffolding that a contractor 
constructs when putting up a new multi-story structure: 
contractors who put the scaffolding up after construction 
has started aren’t likely to have successful careers

• That is, especially for complicated systems of PDEs (which 
is most of the PDEs of current interest in theoretical 
physics), one should always code the independent 
residual first
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• Psychological/sociological note:

Implementing the IR first is the sort of manuever that 
doesn’t come naturally for most physicists since, as is the 
case of scaffolding, the independent residual appears to the 
non-practitioner (i.e. someone who has actually determined 
one or more previously uncomputed solutions to one or 
more PDEs) to be wasted effort since it doesn’t show up in 
the finished product.  That is, training in traditional 
theoretical physics favours, quick-and-dirty, one-off, do-it-
as-many-ways-as-you-can (if you’re of the Feynman camp)

• This seat-of-the-pants, shoot-from-the-hip approach 
doesn’t tend to work well in computational physics.  Again, 
with current computer languages, no detail is irrelevant, 
and the sooner one adopts a rigorous, engineering 
approach to one’s numerical analysis, the better. 



• Psychological/sociological note (cont.):

• Moreover, I am happy to report that I have observed strong 
correlation of

– The quality of student vis a vis solving PDEs using FDAs

– The likelihood that that student will take my advice 
concerning when the IR should be coded seriously



Independent Residual for NKG eqn

• Recall that our model PDE for the (complex) nonlinear Klein 
Gordon field is  

and that I left it as an exercise for you to show that this 
could be re-written as 

• Introducing the usual second-order (O(h2)) approximations 
to the second derivatives ∂tt and ∂rr
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• Introducing the usual second-order (O(h2)) approximations 
to the second derivatives ∂tt and ∂xx in the form of 
difference operators Dtt and Drr

the following is our independent residual, RI 
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• Note that we are not evaluating independent residuals for 
the boundary conditions—in practice we should definitely do 
this particularly if the BC’s are differential (Dirichlet
conditions can be checked by inspection!)



Convergence Tests & Independent Residual 
Evaluation for Model Problem



6-level Convergence Test of φ1



6-level Independent Residual Test of φ1



6-level Scaled Independent Residual Test of φ1



Actual failed IR test (Tue AM)
Forgot factor of r multiplying dV/dφ* (i.e. difference 

solution was correct, IR was wrong!)



Where to from here?

• Will be setting up a web page (which will be accessible via 
my home page -> “Previous Teaching” (google “choptuik” 
to locate my home page) that contains 

– These lectures

– Links to further associated material

– Links to instructions for installing software, including all 
of the code used to generate results shown in these 
lectures

– Additional lecture on Q-balls

– Problems/exercises
• Will happily look at any code you write in instances where 

you are having difficulty

• Will happily “grade” any solutions you submit (can’t 
guarantee a very quick turn around, although I will try to 
be responsive



Where to from here?

                   UBC of course!!

Think about joining us if you're considering 

pursuing graduate studies outside of Brazil



Excerpts from Richardson’s 1910 Paper
Phil. Trans. Roy. Soc. 210 307—357







Excerpts from Richardson’s 1910 paper



Q-Ball Results



Evolution of real and imaginary field components



Evlolution of field modulus



Evolution of d(phi)/dt (level 8, Nx = 257)



6-level recaled d(phi)/dt



Rescaled independent residuals for φ1


