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Overview / Summary

• TodayToday

– Review of CN differencing

– CN FDA for nonlinear Klein-Gordon eqn (NKG)

– Sample evolution (numerical solution) of NKG

– Convergence testing & validation of Convergence testing & validation of 
implementation / results

• Basic concepts  definitions & techniques for convergence • Basic concepts, definitions & techniques for convergence 
testing FDAs 
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• Approximate time derivative using
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where     is the FDA of the spatial operator    
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• If     is a second order approximation, so thathL

then the overall scheme will be second order in both space 

2( )hL L O h= +

and time. 

• Note that Crank-Nicholson finite-differencing generically g g y
leads to a coupled system for the advanced time unknowns

1n
ju +

• For many hyperbolic/wave-like equations, such as the 
nonlinear Klein Gordon equation, a simple relaxation 
technique provides a robust and efficient method of solving technique provides a robust and efficient method of solving 
the system of equations



• Adopting the standard finite difference notation introduced 
previouslypreviously

( )( ), 1n
jf f n t j r≡ Δ − Δ

we now define various finite difference operators as follows
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• In terms of these difference operators, our (Crank-
Nicholson) discretizations of the four PDEs comprising the 
NKG equation are then
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• The boundary conditions are 
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• The specific initial conditions we will consider for testing 
(development purposes) are as follows  First  we define an (development purposes) are as follows. First, we define an 
auxiliary function
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and we now have completely specified the discrete 
equations of motion for the discrete unknowns

2(0, ) ( )or rφΠ ≡

equations of motion for the discrete unknowns
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• Typical results from implementation of the difference 
equations as detailed aboveequations as detailed above

– Spatial domain
0 5

– Potential parameters

0 5r≤ ≤
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– Initial pulse profile
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– Base (coarsest) resolution
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Convergence Testing & Validation of Resultsg g



Some Basic Concepts & Definitions 

• Let

Lu f=

denote a general differential system

l h k f ( )• For simplicity, concretness, can think of as a 
single function of time and one space vbl

( , )u u t r≡

• However, discussion applies to cases in more independent 
vbls as well as multiple dependent vbls

• In the above, is some differential operator,    is the 
unknown solution of the PDE, and is some specified fcn
(frequently called a source fcn) of the independent vars

L u
f



• Here, and in the following, will often be convenient to use a 
notation where a subscript h on a quantity indicates that it 
is discrete, or associated with the FDA, rather than the 
continuum 

• With this notation, we will generically denote an FDA of our 
PDE by

h h hL u f

where     is the discrete soln,     is the source fcn evaluated 
 th  FD h  d     i  th  FD i ti  f LhL

hfhu

L u f=

on the FD mesh, and     is the FD approximation of LhL



Residual

• Note that another way of writing our FDA is 

0h h hL u f− =

• Often useful to view FDAs in this form for following reasons:

1. Yields a canonical view of what it means to solve the FDA: 
“drive the residual to 0”

2 For iterative approaches to the soln of the FDA (which are 2. For iterative approaches to the soln of the FDA (which are 
common, since it may be too expensive to solve the 
algebraic equations directly), we are naturally lead to the 
concept of a residualconcept of a residual

3. Residual is simple the level of “non-satisfaction” of our FDA 
(and, in fact, of any algebraic expression)



4. Specifically, if      is some approximation to the true 
solution of the FDA,      , then the residual,       , 

hu
hu

associated with      is justhu

h h h hr L u f≡ −

• Leads to the view of a convergent iterative procedure as 
being one which “drives the residual to 0”



Truncation Error

• Truncation error,     , of an FDA is defined by

h h hL u fτ ≡ −

he

where    satisfies the continuum PDE.u

• Note that the form of the truncation error can always be 
computed (typically using Taylor series) from the FDA and the 
PDE



Convergence

• Assume FDA is characterized by a single discretization scale, h

• We say that the FDA converges if and only if

In practice  convergence is our primary concern  as numerical 

as 0h uu h→ →

• In practice, convergence is our primary concern  as numerical 
analysts, particularly if there is reason to suspect that the 
solutions of our PDEs are good models for real phenomena:

i.e. that we are not “simulating” physics, but are solving PDEs 
whose solutions are expected to accurately reflect the real 
worldo d

• For example, modulo general relativity not being an accurate 
theory in the strong, dynamical limit, expect solutions of y g, y , p
Einstein’s equations for colliding black holes to model the 
astrophysics to very high precision



Consistency

• Assume FDA with truncation error     is characterized by a 
single discretization scale, h

hτ

• We say that the FDA is consistent if

0 as h 0hτ → →

• Consistency is obviously a necessary condition for convergence



Solution Error

• The solution error,     , associated with an FDA is defined by

h he u u≡ −

he

e u u≡



Relation Between Truncation & Solution Errors

• Standard (naïve) approach—assume that

h he u u≡ −

is of the same order in the mesh spacing, h, as the truncation 
error,  hτ

• Assumption is often warranted, but it is extremely instructive 
to consider why it is justified and to investigate, following LF 
Richardson (1910 !!) in some detail the nature of the soln error

• Will return to this issue in the last lecture 



Error Analysis & Convergence Tests
• Discussion here applies to essentially any continuum problem 

that is solved with using FDAs on a uniform mesh structure

• In particular, also applies to the treatment of ODEs and elliptic 
PDEs as well as PDEs of evolution type (hyperbolic/wave, 
diffusion, Schrodinger …)

– For ODEs and elliptic PDEs convergence is often easier to 
achieve due to the fact that the FDAs are typically 
intrinsically stable

• We also note that departures from non-uniformity in the FD  
mesh do not, in general, completely destroy the picture—es do o , ge e a , co p e e y des oy e p c u e
however do tend to distort it in ways that are beyond the scope 
of these lectures

• IMPOSSIBLE TO OVERSTATE IMPORTANCE OF 
CONVERGENCE STUDIES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


